This question provides students with an opportunity to see expressions as constructed …
This question provides students with an opportunity to see expressions as constructed out of a sequence of operations: first taking the square root of n, then dividing the result of that operation into s. Students studying statistics encounter the expression in this question as the standard deviation of a sampling distribution with samples of size n when the distribution from which the sample is taken has standard deviation s.
This task asks students to find the amount of two ingredients in …
This task asks students to find the amount of two ingredients in a pasta blend. The task provides all the information necessary to solve the problem by setting up two linear equations in two unknowns.
This task has some aspects of a mathematical modeling problem (SMP 4) …
This task has some aspects of a mathematical modeling problem (SMP 4) and it also illustrates SMP 1 (Making sense of a problem). Students are given all the relevant information on the nutritional labels, but they have to figure out how to use this information. They have to come up with the idea that they can set up two equations in two unknowns to solve the problem.
This tasks is an example of a mathematical modeling problem (SMP 4) …
This tasks is an example of a mathematical modeling problem (SMP 4) and it also illustrates SMP 1 (Making sense of a problem). Students are only told that there are two ingredients in the pasta and they have a picture of the box. It might even be better to just show the picture of the box, or to bring in the box and ask the students to pose the question themselves.
The purpose of the task is to show students a situation where …
The purpose of the task is to show students a situation where squaring both sides of an equation can result in an equation with more solutions than the original one. The reason for this is that it is possible to have two unequal numbers whose squares are equal.
In this number tracing activity students create a rainbow number line. This …
In this number tracing activity students create a rainbow number line. This can be a colorful tool with a personal connection to the student that may be used as a reference. It can serve as a visual and motor reminder when reading and writing numbers because the student went through the tracing motion.
In this task students are asked to analyze a function and its …
In this task students are asked to analyze a function and its inverse when the function is given as a table of values. In addition to finding values of the inverse function from the table, they also have to explain why the given function is invertible.
The goal of this task is to use the quotient rule of …
The goal of this task is to use the quotient rule of exponents to help explain how to define the expressions c^k for c>0 and k≤0. This important definition is motivated and explained by the law of exponents: adopting the definitions for the expressions c^0 and c^−n given in the task allows us to maintain the intuitive product and quotient rules known for all positive exponents (which this task assumes students are familiar with).
This task requires interpreting a function in a non-standard context. While the …
This task requires interpreting a function in a non-standard context. While the domain and range of this function are both numbers, the way in which the function is determined is not via a formula but by a (pre-determined) sequence of coin flips. In addition, the task provides an opportunity to compute some probabilities in a discrete situation.
The task is better suited for instruction than for assessment as it …
The task is better suited for instruction than for assessment as it provides students with a non standard setting in which to interpret the meaning of functions. Students should carry out the process of flipping a coin and modeling this Random Walk in order to develop a sense of the process before analyzing it mathematically.
This task provides a context to calculate discrete probabilities and represent them …
This task provides a context to calculate discrete probabilities and represent them on a bar graph. It could also be used to create a class activity where students gather, represent, and analyze data, running simulations of the random walk and recording and then displaying their results.
This task completes the line of reasoning of Random Walk III in …
This task completes the line of reasoning of Random Walk III in a situation where the numbers become too large to calculate and so abstract reasoning is required in order to compare the different probabilities. It is intended for instructional purposes only with a goal of understanding how to calculate and compare the combinatorial symbols.
This task makes for a good follow-up task on rational irrational numbers …
This task makes for a good follow-up task on rational irrational numbers after that the students have been acquainted with some of the more basic properties. In addition to eliciting several different types of reasoning, the task requires students to rewrite radical expressions in which the radicand is divisible by a perfect square (N-RN.2).
In some textbooks, a distinction is made between a ratio, which is …
In some textbooks, a distinction is made between a ratio, which is assumed to have a common unit for both quantities, and a rate, which is defined to be a quotient of two quantities with different units (e.g. a ratio of the number of miles to the number of hours). No such distinction is made in the common core and hence, the two quantities in a ratio may or may not have a common unit. However, when there is a common unit, as in this problem, it is possible to add the two quantities and then find the ratio of each quantity with respect to the whole (often described as a part-whole relationship).
The three tasks in this set are not examples of tasks asking …
The three tasks in this set are not examples of tasks asking students to compute using the standard algorithms for multiplication and division because most people know what those kinds of problems look like. Instead, these tasks show what kinds of reasoning and estimation strategies students need to develop in order to support their algorithmic computations.
The three tasks (including part 1 and part 3) in this set …
The three tasks (including part 1 and part 3) in this set are not examples of tasks asking students to compute using the standard algorithms for multiplication and division because most people know what those kinds of problems look like. Instead, these tasks show what kinds of reasoning and estimation strategies students need to develop in order to support their algorithmic computations.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.