Updating search results...

Search Resources

215 Results

View
Selected filters:
  • reproducibility
Library Carpentry: Introduction to Working with Data (Regular Expressions)
Unrestricted Use
CC BY
Rating
0.0 stars

This Library Carpentry lesson introduces librarians and others to working with data. This Library Carpentry lesson introduces people with library- and information-related roles to working with data using regular expressions. The lesson provides background on the regular expression language and how it can be used to match and extract text and to clean data.

Subject:
Applied Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Alex Volkov
Alexander Mendes
Angus Taggart
Belinda Weaver
BertrandCaron
Bianca Peterson
Christopher Edsall
Christopher Erdmann
Chuck McAndrew
Dan Michael Heggø
Dan Michael O. Heggø
Elizabeth Lisa McAulay
Felix Hemme
François Michonneau
James Baker
Janice Chan
Jeffrey Oliver
Jeremy Guillette
Jodi Schneider
Jonah Duckles
Katherine Koziar
Katrin Leinweber
Kunal Marwaha
PH03N1X007
Paul R. Pival
Saskia Scheltjens
Shari Laster
Tim Dennis
fdsayre
lsult
remerjohnson
yvonnemery
Date Added:
08/07/2020
Library Carpentry: OpenRefine
Unrestricted Use
CC BY
Rating
0.0 stars

Library Carpentry lesson: an introduction to OpenRefine for Librarians This Library Carpentry lesson introduces people working in library- and information-related roles to working with data in OpenRefine. At the conclusion of the lesson you will understand what the OpenRefine software does and how to use the OpenRefine software to work with data files.

Subject:
Applied Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Alexander Mendes
Anna Neatrour
Antonin Delpeuch
Betty Rozum
Christina Koch
Christopher Erdmann
Daniel Bangert
Elizabeth Lisa McAulay
Evan Williamson
Jamene Brooks-Kieffer
James Baker
Jamie Jamison
Jeffrey Oliver
Katherine Koziar
Naupaka Zimmerman
Paul R. Pival
Rémi Emonet
Tim Dennis
Tom Honeyman
Tracy Teal
andreamcastillo
dnesdill
hauschke
mhidas
Date Added:
08/07/2020
Library Carpentry: SQL
Unrestricted Use
CC BY
Rating
0.0 stars

Library Carpentry, an introduction to SQL for Librarians This Library Carpentry lesson introduces librarians to relational database management system using SQLite. At the conclusion of the lesson you will: understand what SQLite does; use SQLite to summarise and link data.

Subject:
Applied Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Anna-Maria Sichani
Belinda Weaver
Christopher Erdmann
Dan Michael Heggø
David Kane
Elaine Wong
Emanuele Lanzani
Fernando Rios
Jamene Brooks-Kieffer
James Baker
Janice Chan
Jeffrey Oliver
Katrin Leinweber
Kunal Marwaha
Reid Otsuji
Ruud Steltenpool
Tim Dennis
mdschleu
orobecca
thegsi
Date Added:
08/07/2020
Library Carpentry: The UNIX Shell
Unrestricted Use
CC BY
Rating
0.0 stars

Library Carpentry lesson to learn how to use the Shell. This Library Carpentry lesson introduces librarians to the Unix Shell. At the conclusion of the lesson you will: understand the basics of the Unix shell; understand why and how to use the command line; use shell commands to work with directories and files; use shell commands to find and manipulate data.

Subject:
Applied Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Adam Huffman
Alex Kassil
Alex Mendes
Alexander Konovalov
Alexander Morley
Ana Costa Conrado
Andrew Reid
Andrew T. T. McRae
Ariel Rokem
Ashwin Srinath
Bagus Tris Atmaja
Belinda Weaver
Benjamin Bolker
Benjamin Gabriel
BertrandCaron
Brian Ballsun-Stanton
Christopher Erdmann
Christopher Mentzel
Colin Sauze
Dan Michael Heggø
Dave Bridges
David McKain
Dmytro Lituiev
Elena Denisenko
Eric Jankowski
Erin Alison Becker
Evan Williamson
Farah Shamma
Gabriel Devenyi
Gerard Capes
Giuseppe Profiti
Halle Burns
Hannah Burkhardt
Ian Lessing
Ian van der Linde
Jake Cowper Szamosi
James Baker
James Guelfi
Jarno Rantaharju
Jarosław Bryk
Jason Macklin
Jeffrey Oliver
John Pellman
Jonah Duckles
Jonny Williams
Katrin Leinweber
Kevin M. Buckley
Kunal Marwaha
Laurence
Marc Gouw
Marie-Helene Burle
Marisa Lim
Martha Robinson
Martin Feller
Megan Fritz
Michael Lascarides
Michael Zingale
Michele Hayslett
Mike Henry
Morgan Oneka
Murray Hoggett
Nicola Soranzo
Nicolas Barral
Noah D Brenowitz
Owen Kaluza
Patrick McCann
Peter Hoyt
Rafi Ullah
Raniere Silva
Ruud Steltenpool
Rémi Emonet
Stephan Schmeing
Stephen Jones
Stephen Leak
Stéphane Guillou
Susan J Miller
Thomas Mellan
Tim Dennis
Tom Dowrick
Travis Lilleberg
Victor Koppejan
Vikram Chhatre
Yee Mey
colinmorris
csqrs
earkpr
ekaterinailin
hugolio
jenniferleeucalgary
reshama shaikh
sjnair
Date Added:
08/07/2020
Licensing your research
Unrestricted Use
CC BY
Rating
0.0 stars

Join us for a 30 minute guest webinar by Brandon Butler, Director of Information Policy at the University of Virginia. This webinar will introduce questions to think about when picking a license for your research. You can signal which license you pick using the License Picker on the Open Science Framework (OSF; https://osf.io). The OSF is a free, open source web application built to help researchers manage their workflows. The OSF is part collaboration tool, part version control software, and part data archive. The OSF connects to popular tools researchers already use, like Dropbox, Box, Github, Mendeley, and now is integrated with JASP, to streamline workflows and increase efficiency.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020
Local Grassroots Networks Engaging Open Science in Their Communities
Unrestricted Use
CC BY
Rating
0.0 stars

This recorded webinar features insights from international panelists currently nurturing culture change in research among their local communities.Representat...

Subject:
Education
Material Type:
Lesson
Provider:
Center for Open Science
Author:
Brian Nosek
Date Added:
03/31/2021
Mapping the discursive dimensions of the reproducibility crisis: A mixed methods analysis
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Addressing issues with the reproducibility of results is critical for scientific progress, but conflicting ideas about the sources of and solutions to irreproducibility are a barrier to change. Prior work has attempted to address this problem by creating analytical definitions of reproducibility. We take a novel empirical, mixed methods approach to understanding variation in reproducibility conversations, which yields a map of the discursive dimensions of these conversations. This analysis demonstrates that concerns about the incentive structure of science, the transparency of methods and data, and the need to reform academic publishing form the core of reproducibility discussions. We also identify three clusters of discussion that are distinct from the main group: one focused on reagents, another on statistical methods, and a final cluster focused the heterogeneity of the natural world. Although there are discursive differences between scientific and popular articles, there are no strong differences in how scientists and journalists write about the reproducibility crisis. Our findings show that conversations about reproducibility have a clear underlying structure, despite the broad scope and scale of the crisis. Our map demonstrates the value of using qualitative methods to identify the bounds and features of reproducibility discourse, and identifies distinct vocabularies and constituencies that reformers should engage with to promote change.

Subject:
Social Science
Material Type:
Reading
Author:
Julie Chung
Kelsey Ichikawa
Momin Malik
Nicole C. Nelson
Date Added:
11/13/2020
Materials for the Webinar "Helping Science Succeed: The Librarian’s Role in Addressing the Reproducibility Crisis"
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Headlines and scholarly publications portray a crisis in biomedical and health sciences. In this webinar, you will learn what the crisis is and the vital role of librarians in addressing it. You will see how you can directly and immediately support reproducible and rigorous research using your expertise and your library services. You will explore reproducibility guidelines and recommendations and develop an action plan for engaging researchers and stakeholders at your institution. #MLAReproducibilityLearning OutcomesBy the end of this webinar, participants will be able to: describe the basic history of the “reproducibility crisis” and define reproducibility and replicability explain why librarians have a key role in addressing concerns about reproducibility, specifically in terms of the packaging of science explain 3-4 areas where librarians can immediately and directly support reproducible research through existing expertise and services start developing an action plan to engage researchers and stakeholders at their institution about how they will help address research reproducibility and rigorAudienceLibrarians who work with researchers; librarians who teach, conduct, or assist with evidence-synthesis or critical appraisal, and managers and directors who are interested in allocating resources toward supporting research rigor. No prior knowledge or skills required. Basic knowledge of scholarly research and publishing helpful.

Subject:
Applied Science
Life Science
Physical Science
Social Science
Material Type:
Lesson
Provider:
UMN
Author:
Amy Riegelman
Frank Sayre
Date Added:
02/13/2020
Meeting the Requirements of Funders Around Open Science: Open Resources and Processes for Education
Unrestricted Use
CC BY
Rating
0.0 stars

Expectations by funders for transparent and reproducible methods are on the rise. This session covers expectations for preregistration, data sharing, and open access results of three key funders of education research including the Institute of Education Sciences, the National Science Foundation, and Arnold Ventures. Presenters cover practical resources for meeting these requirements such as the Registry for Efficacy and Effectiveness Studies (REES), the Open Science Framework (OSF), and EdArXiv. Presenters: Jessaca Spybrook, Western Michigan University Bryan Cook, University of Virginia David Mellor, Center for Open Science

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020
Meta-assessment of bias in science
Unrestricted Use
CC BY
Rating
0.0 stars

Numerous biases are believed to affect the scientific literature, but their actual prevalence across disciplines is unknown. To gain a comprehensive picture of the potential imprint of bias in science, we probed for the most commonly postulated bias-related patterns and risk factors, in a large random sample of meta-analyses taken from all disciplines. The magnitude of these biases varied widely across fields and was overall relatively small. However, we consistently observed a significant risk of small, early, and highly cited studies to overestimate effects and of studies not published in peer-reviewed journals to underestimate them. We also found at least partial confirmation of previous evidence suggesting that US studies and early studies might report more extreme effects, although these effects were smaller and more heterogeneously distributed across meta-analyses and disciplines. Authors publishing at high rates and receiving many citations were, overall, not at greater risk of bias. However, effect sizes were likely to be overestimated by early-career researchers, those working in small or long-distance collaborations, and those responsible for scientific misconduct, supporting hypotheses that connect bias to situational factors, lack of mutual control, and individual integrity. Some of these patterns and risk factors might have modestly increased in intensity over time, particularly in the social sciences. Our findings suggest that, besides one being routinely cautious that published small, highly-cited, and earlier studies may yield inflated results, the feasibility and costs of interventions to attenuate biases in the literature might need to be discussed on a discipline-specific and topic-specific basis.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Physical Science
Social Science
Material Type:
Reading
Provider:
National Academy of Sciences
Author:
Daniele Fanelli
John P. A. Ioannidis
Rodrigo Costas
Date Added:
08/07/2020
Metascience Forum 2020 - YouTube
Unrestricted Use
CC BY
Rating
0.0 stars

In his talk, Professor Nosek defines replication as gathering evidence that tests an empirical claim made in an original paper. This intent influences the design and interpretation of a replication study and addresses confusion between conceptual and direct replications.
---
Are you a funder interested in supporting research on the scientific process? Learn more about the communities mobilizing around the emerging field of metascience by visiting metascience.com. Funders are encouraged to review and adopt the practices overviewed at cos.io/top-funders as part of the solution to issues discussed during the Funders Forum.

Subject:
Education
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Brian Nosek
Date Added:
03/21/2021
The Methodologists: a Unique Category of Scientific Actors
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This essay introduces a new analytical category of scientific actors: the methodologists. These actors are distinguished by their tendency to continue to probing scientific objects that their peers consider to be settled. The methodologists are a useful category of actors for science and technology studies (STS) scholars to follow because they reveal contingencies and uncertainties in taken-for-granted science. Identifying methodologists is useful for STS analysts seeking a way into science in moments when it is no longer “in the making” or there is little active controversy. Studying methodologists is also useful for scholars seeking to understand the genesis of scientific controversies, particularly controversies about long-established methods, facts, or premises.

Subject:
Social Science
Material Type:
Reading
Author:
Nicole C. Nelson
Date Added:
11/13/2020
NIGMS Clearinghouse for Training Modules to Enhance Data Reproducibility
Read the Fine Print
Rating
0.0 stars

In January 2014, NIH launched a series of initiatives to enhance rigor and reproducibility in research. As a part of this initiative, NIGMS, along with nine other NIH institutes and centers, issued a funding opportunity announcement (FOA) RFA-GM-15-006 to develop, pilot, and disseminate training modules to enhance data reproducibility. This FOA was reissued in 2018 (RFA-GM-18-002).For the benefit of the scientific community, we will post the products of grants funded by these FOAs on this website as they become available. In addition, we are sharing here other relevant training modules developed, including courses developed from administrative supplements to NIGMS predoctoral T32 grants.

Subject:
Applied Science
Life Science
Physical Science
Social Science
Material Type:
Lecture
Provider:
NIH
Author:
National Institutes of Health
Date Added:
08/07/2020
OSF101
Unrestricted Use
CC BY
Rating
0.0 stars

This webinar walks you through the basics of creating an OSF project, structuring it to fit your research needs, adding collaborators, and tying your favorite online tools into your project structure. OSF is a free, open source web application built by the Center for Open Science, a non-profit dedicated to improving the alignment between scientific values and scientific practices. OSF is part collaboration tool, part version control software, and part data archive. It is designed to connect to popular tools researchers already use, like Dropbox, Box, Github, and Mendeley, to streamline workflows and increase efficiency.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020
OSF Collections: supporting research discoverability and reuse
Unrestricted Use
CC BY
Rating
0.0 stars

The OSF Collections repository platform supports the discoverability and reuse of research by enabling the aggregation of related projects across OSF. With OSF Collections, any funder, journal, society, or research community can show their commitment to scientific integrity by aggregating the open outputs from their disciplines, grantees, journal articles, or more. Learn how research collections can foster new norms for sharing, collaboration, and reproducibility.

We also provide a demo of how OSF Collections aggregates and hosts your research by discipline, funded outcomes, project type, journal issue, and more.

Visit cos.io/collections to learn more.

Subject:
Education
Material Type:
Lesson
Provider:
Center for Open Science
Date Added:
03/31/2021
OSF In The Lab: Organizing related projects  with Links, Forks, and Templates
Unrestricted Use
CC BY
Rating
0.0 stars

Files for this webinar are available at: https://osf.io/ewhvq/ This webinar focuses on how to use the Open Science Framework (OSF) to tie together and organize multiple projects. We look at example structures appropriate for organizing classroom projects, a line of research, or a whole lab's activity. We discuss the OSF's capabilities for using projects as templates, linking projects, and forking projects as well as some considerations for using each of those capabilities when designing a structure for your own project. The OSF is a free, open source web application built to help researchers manage their workflows. The OSF is part collaboration tool, part version control software, and part data archive. The OSF connects to popular tools researchers already use, like Dropbox, Box, Github and Mendeley, to streamline workflows and increase efficiency.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020
OSF in the Classroom
Unrestricted Use
CC BY
Rating
0.0 stars

This webinar will introduce how to use the Open Science Framework (OSF; https://osf.io) in a Classroom. The OSF is a free, open source web application built to help researchers manage their workflows. The OSF is part collaboration tool, part version control software, and part data archive. The OSF connects to popular tools researchers already use, like Dropbox, Box, Github and Mendeley, to streamline workflows and increase efficiency. This webinar will discuss how to introduce reproducible research practices to students, show ways of tracking student activity, and introduce the use of Templates and Forks on the OSF to allow students to easily make new class projects. The OSF is the flagship product of the Center for Open Science, a non-profit technology start-up dedicated to improving the alignment between scientific values and scientific practices. Learn more at cos.io and osf.io, or email contact@cos.io.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
Center for Open Science
Author:
Center for Open Science
Date Added:
08/07/2020
On the reproducibility of science: unique identification of research resources in the biomedical literature
Unrestricted Use
CC BY
Rating
0.0 stars

Scientific reproducibility has been at the forefront of many news stories and there exist numerous initiatives to help address this problem. We posit that a contributor is simply a lack of specificity that is required to enable adequate research reproducibility. In particular, the inability to uniquely identify research resources, such as antibodies and model organisms, makes it difficult or impossible to reproduce experiments even where the science is otherwise sound. In order to better understand the magnitude of this problem, we designed an experiment to ascertain the “identifiability” of research resources in the biomedical literature. We evaluated recent journal articles in the fields of Neuroscience, Developmental Biology, Immunology, Cell and Molecular Biology and General Biology, selected randomly based on a diversity of impact factors for the journals, publishers, and experimental method reporting guidelines. We attempted to uniquely identify model organisms (mouse, rat, zebrafish, worm, fly and yeast), antibodies, knockdown reagents (morpholinos or RNAi), constructs, and cell lines. Specific criteria were developed to determine if a resource was uniquely identifiable, and included examining relevant repositories (such as model organism databases, and the Antibody Registry), as well as vendor sites. The results of this experiment show that 54% of resources are not uniquely identifiable in publications, regardless of domain, journal impact factor, or reporting requirements. For example, in many cases the organism strain in which the experiment was performed or antibody that was used could not be identified. Our results show that identifiability is a serious problem for reproducibility. Based on these results, we provide recommendations to authors, reviewers, journal editors, vendors, and publishers. Scientific efficiency and reproducibility depend upon a research-wide improvement of this substantial problem in science today.

Subject:
Biology
Life Science
Social Science
Material Type:
Reading
Provider:
PeerJ
Author:
Gregory M. LaRocca
Holly Paddock
Laura Ponting
Matthew H. Brush
Melissa A. Haendel
Nicole A. Vasilevsky
Shreejoy J. Tripathy
Date Added:
08/07/2020
OpenML: An R Package to Connect to the Machine Learning Platform OpenML
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

OpenML is an online machine learning platform where researchers can easily share data, machine learning tasks and experiments as well as organize them online to work and collaborate more efficiently. In this paper, we present an R package to interface with the OpenML platform and illustrate its usage in combination with the machine learning R package mlr (Bischl et al, 2016). We show how the OpenML package allows R users to easily search, download and upload data sets and machine learning tasks. Furthermore, we also show how to upload results of experiments, share them with others and download results from other users. Beyond ensuring reproducibility of results, the OpenML platform automates much of the drudge work, speeds up research, facilitates collaboration and increases the users’ visibility online.

Subject:
Social Science
Material Type:
Reading
Author:
Benjamin Hofner
Bernd Bischl
Dominik Kirchhoff
Heidi Seibold
Jakob Bossek
Joaquin Vanschoren
Michel Lang
Pascal Kerschke
Giuseppe Casalicchio
Date Added:
11/13/2020