Students are introduced to several types of common medical sensor devices, such …
Students are introduced to several types of common medical sensor devices, such as ear and forehead thermometers, glucometers and wrist blood pressure monitors; they use the latter to measure their blood pressure and pulse rates. Students also measure their heights and weights in order to calculate their BMIs (body mass index). Then they use the collected data to create and analyze scatterplots of the different variables to determine if any relationships exist between the measured variables. Discussions about the trends observed and possible health concerns conclude the activity.
Students learn about contamination and pollution, specifically in reference to soil in …
Students learn about contamination and pollution, specifically in reference to soil in and around rivers. To start, groups use light sensors to take light reflection measurements of different colors of sand (dyed with various amounts of a liquid food dye), generating a set of "soil" calibration data. Then, they use a stream table with a simulated a river that has a scattering of "contaminated wells" represented by locations of unknown amounts of dye. They make visual observations and use light sensors again to take reflection measurements and refer to their earlier calibration data to determine the level of "contamination" (color dye) in each well. Acting as engineers, they determine if their measured data is comparable to visual observations. The small-scale simulated flowing river shows how contamination can spread.
Students use a simple seesaw to visualize solving a two- or three-step …
Students use a simple seesaw to visualize solving a two- or three-step mathematics equation, while solving a basic structural engineering weight balance problem in the process. They solve two-step equations on a worksheet and attempt to solve the challenge of "balancing a beam" through hands-on problems. The use of sensor equipment for correct position monitoring aids students in balancing the structure, as well as balancing the equation as they solve it on paper.
Working as if they are engineers aiming to analyze and then improve …
Working as if they are engineers aiming to analyze and then improve data collection devices for precision agriculture, students determine how accurate temperature sensors are by comparing them to each other. Teams record soil temperature data during a class period while making changes to the samples to mimic real-world crop conditions—such as the addition of water and heat and the removal of the heat. Groups analyze their collected data by finding the mean, median, mode, and standard deviation. Then, the class combines all the team data points in order to compare data collected from numerous devices and analyze the accuracy of their recording devices by finding the standard deviation of temperature readings at each minute. By averaging the standard deviations of each minute’s temperature reading, students determine the accuracy of their temperature sensors. Students present their findings and conclusions, including making recommendations for temperature sensor improvements.
Students measure different types of small-sized beams and calculate their respective moments …
Students measure different types of small-sized beams and calculate their respective moments of inertia. They compare the calculations to how much the beams bend when loads are placed on them, gaining insight into the ideal geometry and material for load-bearing beams.
With the challenge to program computers to mimic the human reaction after …
With the challenge to program computers to mimic the human reaction after touching a hot object, students program LEGO® robots to "react" and move back quickly once their touch sensors bump into something. By relating human senses to electronic sensors used in robots, students see the similarities between the human brain and its engineering counterpart, the computer, and come to better understand the functioning of sensors in both applications. They apply an understanding of the human "stimulus-sensor-coordinator-effector-response" framework to logically understand human and robot actions.
Students learn about tsunamis, discovering what causes them and what makes them …
Students learn about tsunamis, discovering what causes them and what makes them so dangerous. They learn that engineers design detection and warning equipment, as well as structures that that can survive the strong wave forces. In a hands-on activity, students use a table-top-sized tsunami generator to observe the formation and devastation of a tsunami. They see how a tsunami moves across the ocean and what happens when it reaches a coastline. They make villages of model houses to test how different material types are impacted by the huge waves.
Students learn about ultrasound and how it can be used to determine …
Students learn about ultrasound and how it can be used to determine the shapes and contours of unseen objects. Using a one-dimensional ultrasound imaging device (either prepared by the teacher or put together by the students) that incorporates a LEGO(TM) MINDSTORMS(TM) NXT intelligent brick and ultrasonic sensor, they measure and plot the shape of an unknown object covered by a box. Looking at the plotted data, they make inferences about the shape of the object and guess what it is. Students also learn how engineers use high-frequency waves in the design of medical imaging devices, the analysis of materials and oceanographic exploration. Pre/post quizzes, a worksheet and a LEGO rbt program are provided.
Student pairs first act out the instructions a robot is given with …
Student pairs first act out the instructions a robot is given with one person providing instructions and the other person following the instructions. This activity helps students understand how robots are programmed and with what type of precision commands must be given. Then students program LEGO MINDSTORMS(TM) NXT taskbots to navigate a simple maze. The goal is to teach students that robot computers simply follow directions exactly as they are given, thus one must be very clear and logical with programming instructions.
This activity helps students understand how a LEGO MINDSTORMS(TM) NXT robot moves …
This activity helps students understand how a LEGO MINDSTORMS(TM) NXT robot moves using motors and wheels. Then students relate the concepts of decision-making actuation and motion in humans to their parallels in mechanized robots, and understand the common themes associated with movement.
Students are given a difficult challenge that requires they integrate what they …
Students are given a difficult challenge that requires they integrate what they have learned so far in the unit about wait blocks, loops and switches. They incorporate these tools into their programming of the LEGO MINDSTORMS(TM) NXT robots to perform different tasks depending on input from a sound sensor and two touch sensors. This activity helps students understand how similar logic is implemented for other every day device operations via computer programs. A PowerPoint® presentation, pre/post quizzes and worksheet are provided.
Through four lesson and four activities, students are introduced to the logic …
Through four lesson and four activities, students are introduced to the logic behind programming. Starting with very basic commands, they develop programming skills while they create and test programs using LEGO MINDSTORMS(TM) NXT robots. Students apply new programming tools move blocks, wait blocks, loops and switches in order to better navigate robots through mazes. Through programming challenges, they become familiar with the steps of the engineering design process. The unit is designed to be motivational for student learning, so they view programming as a fun activity. This unit is the third in a series. PowerPoint® presentations, quizzes and worksheets are provided throughout the unit.
Students learn about electric motors and rotational sensors. They learn that motors …
Students learn about electric motors and rotational sensors. They learn that motors convert electrical energy to mechanical energy and typically include rotational sensors to enable distance measuring. They also learn the basics about gear trains and gear ratios. Students create a basic program using the LEGO MINDSTORMS(TM) NXT interface to control a motor to move a small robot. Then, through a 10-minute mini-activity, they make measurements and observations to test a LEGO rotation sensor's ability to measure distance in rotations. This prepares them for the associated activity during which they calculate how many wheel rotations are needed to travel a distance. A PowerPoint® presentation, worksheet and pre/post quizzes are provided.
This lesson introduces students to the major characteristics of robots. The associated …
This lesson introduces students to the major characteristics of robots. The associated activity uses the LEGO MINDSTORMS(TM) NXT system as an example. Before studying robots in more detail, it is important for students to consider the many items they encounter in their daily lives that are robots so they can explore ways engineers can utilize robotics to solve problems in everyday life.The activity also serves as an introduction to the LEGO NXT system so that students may utilize it as an educational tool in subsequent lessons and activities.
Students gain a rigorous background in the primary human "sensors," as preparation …
Students gain a rigorous background in the primary human "sensors," as preparation for comparing them to some electronic equivalents in the associated activity. A review of human vision, hearing, smell, taste and touch, including the anatomies and operational principles, is delivered through a PowerPoint® presentation. Students learn the concept of "stimulus-sensor-coordinator-effector-response" to describe the human and electronic sensory processes. Student pairs use blindfolds, paper towels and small candies in a taste/smell sensory exercise. They take pre/post quizzes and watch two short online videos. Concepts are further strengthened by conducting the associated activity the following day, during which they learn about electronic touch, light, sound and ultrasonic sensors and then "see" sound waves while using microphones connected to computers running (free) Audacity® software.
Students learn about infrared energy and how it is used to sense …
Students learn about infrared energy and how it is used to sense the surrounding environment. They review where infrared falls on the electromagnetic spectrum and learn how infrared sensors work, as well as various ways engineers and scientists create and apply infrared technology to study science and collect information for security, communications, medical, research and other purposes. Pre/post-quizzes and a take-home assignment are provided. Learning the concepts prepares students to conduct the associated activity in which they design and program Arduino-controlled robots that use IR sensors to follow a line and make designated stops, much like the automated guided vehicles used in industry and commerce.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.