Updating search results...

Search Resources

787 Results

View
Selected filters:
  • Numbers and Operations
Math, Grade 6, Rational Numbers, Reflections
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students reflect a figure across one of the axes on the coordinate plane and name the vertices of the reflection. As they are working, students look for and make use of structure to identify a convention for naming the coordinates of the reflected figure.Key ConceptsWhen point (m,n) is reflected across the y-axis, the reflected point is (−m,n).When point (m,n) is reflected across the x-axis, the reflected point is (m,−n).When point (m,n) is reflected across the origin (0,0), the reflected point is (−m,−n).Goals and Learning ObjectivesReflect a figure across one of the axes on the coordinate plane.Name the vertices of the reflected figure.Discern a pattern in the coordinates of the reflected figure.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Rational Numbers, Using Negative and Absolute Numbers
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students answer questions about low temperatures recorded in Barrow, Alaska, to understand when to use negative numbers and when to use the absolute values of numbers.Key ConceptsThe absolute value of a number is its distance from 0 on a number line.The absolute value of a number n is written |n| and is read as “the absolute value of n.”A number and the opposite of the number always have the same absolute value. As shown in the diagram, |3| = 3 and |−3| = 3.In general, taking the opposite of n changes the sign of n. For example, the opposite of 3 is –3.In general, taking the absolute value of n gives a number, |n|, that is always positive unless n = 0. For example, |3| = 3 and |−3| = 3.The absolute value of 0 is 0, which is neither positive nor negative: |0| = 0.Goals and Learning ObjectivesUnderstand when to talk about a number as negative and when to talk about the absolute value of a number.Locate the absolute value of a and the absolute value of b on a number line that shows the location of a and b in different places in relation to 0.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Proportional Relationships, Exploring Numerical Relationships
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students are asked whether they can determine the number of books in a stack by measuring the height of the stack, or the number of marbles in a collection of marbles by weighing the collection.Students are asked to identify for which situations they can determine the number of books in a stack of books by measuring the height of the stack or the number of marbles in a collection of marbles by weighing the collection.Key ConceptsAs students examine different numerical relationships, they come to understand that they can find the number of books or the number of marbles in situations in which the books are all the same thickness and the marbles are all the same weight. This “constant” is equal to the value BA for a ratio A : B; students begin to develop an intuitive understanding of proportional relationships.Goals and Learning ObjectivesExplore numerical relationshipsSWD: Some students with disabilities will benefit from a preview of the goals in each lesson. Have students highlight the critical features or concepts to help them pay close attention to salient information.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Putting Math to Work, Calculating Ranges Of Strouhal Numbers
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students create a bar graph showing the Strouhal numbers for a variety of birds and bats and use their graph and other data to compare the Strouhal numbers of the different animals to analyze variation and to make predictions.Key ConceptsStudents are expected to use the mathematical skills they have acquired in previous lessons or in previous math courses. The lessons in this unit focus on developing and refining problem-solving skills. Students will:Try a variety of strategies to approaching different types of problems.Devise a problem-solving plan and implement their plan systematically.Become aware that problems can be solved in more than one way.See the value of approaching problems in a systematic manner.Communicate their approaches with precision and articulate why their strategies and solutions are reasonable.Make connections between previous learning and real-world problems.Create efficacy and confidence in solving challenging problems in a real-world setting.Goals and Learning ObjectivesAnalyze the relationship among the variables in an equation.Write formulas to show how variables relate.Calculate ranges of Strouhal numbers and use these ranges to make predictions.Communicate findings using multiple representations including tables, charts, graphs, and equations.Create bar graphs.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Working With Rational Numbers, Model Integer Addition
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use the Hot Air Balloon interactive to model integer addition. They then move to modeling addition on horizontal number lines. They look for patterns in their work and their answers to understand general addition methods.Key ConceptsTo add two numbers on a number line, start at 0. Move to the first addend. Then, move in the positive direction (up or right) to add a positive integer or in the negative direction (down or left) to add a negative integer.Here is −6 + 4 on a number line: The rule for integer addition (which extends to addition of rational numbers) is easiest to state if it is broken into two cases:If both addends have the same sign, add their absolute values and give the result the same sign as the addends. For example, to find −5 + (−9), first find |−5|  +|−9| = 14. Because both addends are negative the result is negative. So, −5 + (−9) = −14.If the addends have different signs, subtract the lesser absolute value from the greater absolute value. Give the answer the same sign as the addend with the greater absolute value. For example, to find 5 + (−9), find |−9| − |5| = 9 − 5 = 4. Because −9 has the greater absolute value, the result is negative. So, 5 + (−9) = −4.Goals and Learning ObjectivesModel integer addition on a number line.Learn general methods for adding integers.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Working With Rational Numbers, Model Integer Subtraction
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use the Hot Air Balloon simulation to model integer subtraction. They then move to modeling subtraction on a number line. They use patterns in their work and their answers to write a rule for subtracting integers.Key ConceptsThis lesson introduces the number line model for subtracting integers. To subtract on a number line, start at 0. Move to the location of the first number (the minuend). Then, move in the negative direction (down or left) to subtract a positive integer or in the positive direction (up or right) to subtract a negative integer. In other words, to subtract a number, move in the opposite direction than you would if you were adding it.The Hot Air Balloon simulation can help students see why subtracting a number is the same as adding the opposite:Subtracting a positive number means removing heat from air, which causes the balloon to go down, in the negative direction.Subtracting a negative number means removing weight, which causes the balloon to go up, in the positive direction.The rule for integer subtraction (which extends to addition of rational numbers) is easiest to state in terms of addition: to subtract a number, add its opposite. For example, 5 – 2 = 5 + (–2) = 3 and 5 – (–2) = 5 + 2 = 7.Goals and Learning ObjectivesModel integer subtraction on a number line.Write a rule for subtracting integers.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Working With Rational Numbers, Model Integers Multiplication
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use number lines to represent products of a negative integer and a positive integer, and they use patterns to understand products of two negative integers. Students write rules for products of integers.Key ConceptsThe product of a negative integer and a positive integer can be interpreted as repeated addition. For example, 4 • (–2) = (–2) + (–2) + (–2) + (–2). On a number line, this can be represented as four arrows of length 2 in a row, starting at 0 and pointing in the negative direction. The last arrow ends at –8, indicating that 4 • (–2) = –8. In general, the product of a negative integer and a positive integer is negative.The product of two negative integers is hard to interpret or visualize. In this lesson, we use patterns to help students see why a negative integer multiplied by a negative integer equals a positive integer. For example, students can compute the products in the pattern below.4 • (–3) = –123 • (–3) = –92 • (–3) = –61 • (–3) = –30 • (–3) = 0They can observe that, as the first factor decreases by 1, the product increases by 3. They can continue this pattern to find these products.–1 • (–3) = 3–2 • (–3) = 6–3 • (–3) = 9In the next lesson, we will prove that the rules for multiplying positive and negative integers extend to all rational numbers, including fractions and decimals.Goals and Learning ObjectivesRepresent multiplication of a negative integer and a positive integer on a number line.Use patterns to understand products of two negative integers.Write rules for multiplying integers.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Working With Rational Numbers, Multiplication & Division To Solve Problems
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students solve division problems by changing them into multiplication problems. They then use the relationship between multiplication and division to determine the sign when dividing positive and negative numbers in general.Key ConceptsThe rules for determining the sign of a quotient are the same as those for a product: If the two numbers have the same sign, the quotient is positive; if they have different signs, the quotient is negative. This can be seen by rewriting a division problem as a multiplication of the inverse.For example, consider the division problem −27 ÷ 9. Here are two ways to use multiplication to determine the sign of the quotient:The quotient is the value of x in the multiplication problem 9 ⋅ x = −27. Because 9 is positive, the value of x must be negative in order to get the negative product.The division −27 ÷ 9 is equivalent to the multiplication −27 ⋅ 19. Because this is the product of a negative number and a positive number, the result must be negative.Goals and Learning ObjectivesUse the relationship between multiplication and division to solve division problems involving positive and negative numbers.Understand how to determine whether a quotient will be positive or negative.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Working With Rational Numbers, Reviewing The Properties Of Addition
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students review the properties of addition and write an example for each. Then they apply the properties to simplify numerical expressions.Key ConceptsThe properties of addition:Commutative property of addition: Changing the order of addends does not change the sum. For any numbers a and b, a + b = b + a.Associative property of addition: Changing the grouping of addends does not change the sum. For any numbers a, b, and c, (a + b) + c = a + (b + c).Additive identity property of 0: The sum of 0 and any number is that number. For any number a, a + 0 = 0 + a = a.Existence of additive inverses: The sum of any number and its additive inverse (opposite) is 0. For any number a, a + (−a) = (−a) + a = 0.These properties allow us to manipulate expressions to make them easier to work with. For example, the associative property of addition tells us that we can regroup the expression (311+49)+59 as 311+(49 +59), making it much easier to simplify.Students must be careful to apply the commutative and associative properties only to addition expressions. For example, we cannot switch the −7 and 8 in the expression −7 − 8 to get 8 − (−7). However, if we rewrite −7 − 8 as the addition expression −7 + (−8), we can swap the addends to get −8 + (−7).Goals and Learning ObjectivesUnderstand the properties of addition.Apply the properties of addition to simplify numerical expressions.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Working With Rational Numbers, Reviewing The Properties of Multiplication
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use properties of multiplication to prove that the product of any two negative numbers is positive and the product of a positive number and a negative number is negative.Key ConceptsMultiplication properties can be used to develop the rules for multiplying positive and negative numbers.Students are familiar with the properties from earlier grades:Associative property of multiplication: Changing the grouping of factors does not change the product. For any numbers a, b, and c, (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c).Commutative property of multiplication: Changing the order of factors does not change the product. For any numbers a and b, a ⋅ b = b ⋅ a.Multiplicative identity property of 1: The product of 1 and any number is that number. For any number a, a ⋅ 1 = 1 ⋅ a = a.Property of multiplication by 0: The product of 0 and any number is 0. For any number a, a ⋅ 0 = 0 ⋅ a = 0.Property of multiplication by −1: The product of −1 and a number is the opposite of that number. For any number a, (−1) ⋅ a = −a.Existence of multiplicative inverses: Dividing any number by the same number equals 1. Multiplying any number by its multiplicative inverse equals 1. For every number a ≠ 0, a ÷ a = a ⋅ 1a = 1a ⋅ a = 1.Distributive property: Multiplying a number by a sum is the same as multiplying the number by each term and then adding the products. For any numbers a, b, and c, a ⋅ (b + c) = a ⋅ b + a ⋅ c.In this lesson, students will encounter a proof showing that the product of a positive number and a negative number is negative and two different proofs that the product of two negative numbers is positive. Two alternate proofs are as follows.Proof that the product of two negative numbers is positive:Represent the negative numbers as −a and −b, where a and b are positive.(−a) ⋅ (−b)Original expression= ((−1) ⋅ a) ⋅ ((−1) ⋅ b)   Property of multiplication by −1= (−1) ⋅ (a ⋅ (−1)) ⋅ b   Associative property of multiplication= (−1) ⋅ ((−1) ⋅ a) ⋅ b   Commutative property of multiplication= ((−1) ⋅ (−1)) ⋅ (a ⋅ b)   Associative property of multiplication= 1 ⋅ (a ⋅ b)   Property of multiplication by −1= a ⋅ b   Multiplicative identity property of 1Because a and b are positive, a ⋅ b is positive.Proof that the product of a positive number and a negative number is negative:Let a be the positive number. Let −b be the negative number, where b is positive.a ⋅ (−b)Original expression= a ⋅ ((−1) ⋅ b)     Property of multiplication by −1= (a ⋅ (−1)) ⋅ b     Associative property of multiplication= ((−1) ⋅ a) ⋅ b     Commutative property of multiplication= (−1) ⋅ (a ⋅ b)     Associative property of multiplication= −(a ⋅ b)     Property of multiplication by −1Because a and b are positive, a ⋅ b is positive, so −(a ⋅ b) must be negative.Goals and Learning ObjectivesReview properties of multiplication.Explain why the product of two negative numbers is positive and the product of a negative number and a positive number is negative.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Working With Rational Numbers, Self Check Exercise
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students critique and improve their work on the Self Check, then work on more addition and subtraction problems.Students solve problems that require them to apply their knowledge of adding and subtracting positive and negative numbers.Key ConceptsTo solve the problems in this lesson, students use their knowledge of addition and subtraction with positive and negative numbers.Goals and Learning ObjectivesUse knowledge of addition and subtraction with positive and negative numbers to write problems that meet given criteria.Assess and critique methods for subtracting negative numbers.Find values of variables that satisfy given inequalities.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Working With Rational Numbers, Self Check Exercise
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students critique and improve their work on the Self Check. They then extend their knowledge with additional problems.Students solve problems that require them to apply their knowledge of multiplying and dividing positive and negative numbers. Students will then take a quiz.Key ConceptsTo solve the problems in the Self Check, students must apply their knowledge of multiplication and division of positive and negative numbers learned throughout the unit.Goals and Learning ObjectivesUse knowledge of multiplication and division of positive and negative numbers to solve problems.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Working With Rational Numbers, Simplifying Numerical Expressions
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use the distributive property to rewrite and solve multiplication problems. Then they apply addition and multiplication properties to simplify numerical expressions.Key ConceptsThe distributive property is stated in terms of addition: a(b + c) = ab + ac, for all numbers a, b, and c. However, it can be extended to subtraction as well: a(b − c) = ab − ac, for all numbers a, b, and c. Here is a proof. (We have combined some steps.)a(b − c)Original expression= a(b + (−c))Subtracting is adding the opposite.= a(b) + a(−c)Apply the distributive property.= ab + a(−1 ⋅ c)Apply the property of multiplication by −1.= ab + −1(ac)Apply the associative and commutative properties of multiplication.= ab + −(ac)Apply the property of multiplication by −1.= ab − acAdd the opposite is subtracting.We can use the distributive property to make some multiplication problems easier to solve. For example, by rewriting $1.85 as $2.00 − $0.15 and applying the distributive property, we can change 6($1.85) to a problem that is easy to solve mentally.6($1.85)=6($2−$0.15)=6($2) − 6($0.15)=$12 − $0.90=$11.10One common error students make when simplifying expressions is to simply remove the parentheses when a sum or difference is subtracted. For example, students may rewrite 10 − (6 + 9) as 10 − 6 + 9. In fact, 10 − (6 + 9) = 10 − 6 − 9. To see why, remember that that subtraction is equivalent to adding the opposite, 10 − (6 + 9) = 10 + [−(6 + 9)]. Applying the property of multiplication by −1, this is 10 + (−1)(6 + 9). Using the distributive property, we get 10 + (−6) + (−9) = 10 − 6 − 9.Goals and Learning ObjectivesApply addition and multiplication properties to simplify numerical expressions.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Working With Rational Numbers, The Effects of Positive & Negative Numbers
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students explore what happens to a hot air balloon when they add or remove units of weight or heat. This activity is an informal exploration of addition and subtraction with positive and negative integers.Key ConceptsThis lesson introduces a balloon simulation for adding and subtracting integers. Positive integers are represented by adding units of heat to air and negative integers are represented by adding units of weight. The balloon is pictured next to a vertical number line. The balloon rises one unit for each unit of heat added or each unit of weight removed. The balloon falls one unit for each unit of weight added or each unit of heat removed from the air.Mathematically, adding 1 to a number and subtracting −1 from a number are equivalent and increase the number by 1. Adding −1 to a number and subtracting 1 from a number are equivalent and decrease the number by 1. Addition and subtraction with positive and negative numbers are explored formally in the next several lessons.Goals and Learning ObjectivesExplore the effects of adding or subtracting positive and negative numbers.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Working With Rational Numbers, Understanding Distance & Coordinates
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students find the distance between points on a number line by counting and by using subtraction. They then use subtraction to find differences in temperatures.Students discover that the distance between any two points on the number line is the absolute value of their difference, and apply this idea to solve problems.Key ConceptsStudents know from earlier grades that the distance between two positive numbers on the number line can be found by subtracting the lesser number from the greater number. For example, the distance between 5 and 11 is 11 – 5, or 6. We can also state the rule for finding distance as “The distance between two positive numbers is the absolute value of their difference.” With this version of the rule, we don’t have to consider which number is greater; the result is the same either way. Using the example of 5 and 11, the distance is |11 – 5| or |5 – 11|, both of which are equal to 6.This idea extends to the entire number line, including numbers to the left of 0. That is, the distance between any two numbers is the absolute value of their difference. For example, the distance between –5 and 3 is |–5 – 3| = |–8| = 8 or |3 – (–5)| = |8| = 8, and the distance between –12 and –7 is |–12 – (–7)| = |–5| = 5 or |–7 – (–12)| = |5| = 5.Goals and Learning ObjectivesUnderstand the relationship between the distance between two points on the number line and the difference in the coordinates of those points.Find distances in real-life situations.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Working With Rational Numbers, Understanding Fractions & Decimals
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use number lines to solve addition and subtraction problems involving positive and negative fractions and decimals. They then verify that the same rules they found for integers apply to fractions and decimals as well. Finally, they solve some real-world problems.Key ConceptsThe first four lessons of this unit focused on adding and subtracting integers. Using only integers made it easier for students to create models and visualize the addition and subtraction process. In this lesson, those concepts are extended to positive and negative fractions and decimals. Students will see that the number line model and rules work for these numbers as well.Note that rational number will be formally defined in Lesson 15.Goals and Learning ObjectivesExtend models and rules for adding and subtracting integers to positive and negative fractions and decimals.Solve real-world problems involving addition and subtraction of positive and negative fractions and decimals.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 7, Working With Rational Numbers, Understanding Rational Numbers
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents learn the definition of rational number, and they write rational numbers as ratios of integers and as repeating or terminating decimals.Key ConceptsStudents have been working with rational numbers throughout this unit, but the term rational number is formally defined in this lesson. A rational number is a number that can be written in the form pq, where p and q are integers. All the integers, fractions, decimals, and percents students have worked with so far in their math classes are rational numbers. Following are some rational numbers written as ratios of integers:36=361−1.2=−12105%=5100 −12=−12Any rational number can also be written as a decimal that terminates or that repeats forever in a regular pattern. For example, 35 = 0.6 and 711 = 0.63636363… Repeating decimals are often written with a bar over the digits that repeat. For example, 0.63636363… can be written as 0.63¯.There are numbers that are irrational. These numbers include π and the square root of any whole number that is not a perfect square, such as 2. The decimal form of an irrational number does not terminate, and the digits do not follow a repeating pattern. Students will study irrational numbers in Grade 8.Goals and Learning ObjectivesUnderstand the definition of rational number.Write rational numbers as ratios of integers.Write rational numbers as terminating or repeating decimals.SWD: Students with disabilities may have difficulty working with decimals and fractions, especially moving between the two. If students demonstrate difficulty to the point of frustration, provide direct instruction on the basics for finding equivalent fractions and decimals.ELL: Target and model key language and vocabulary. Specifically, focus on the term rational, as well as terms such as terminate. As you’re discussing the key points, write the words on the board or on large sheets of paper and explain/demonstrate what the words mean. Since these are important points that students will be using throughout the module, write them on large poster board so that students can use them as a reference. Have students record new terms, definitions, and examples in their Notebook. 

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math/ Preschool/ Kindergarten/ The Very Hungry Caterpillar
Unrestricted Use
Public Domain
Rating
0.0 stars

 This Remote Learning Plan was created by Brandee Drahota in collaboration with Rick Meyer as part of the 2020 ESU-NDE Remote Learning Plan Project. Educators worked with coaches to create Remote Learning Plans as a result of the COVID-19 pandemic.The attached Remote Learning Plan is designed for preschool students. This counting lesson uses the story The Very Hungry Caterpillar by Eric Carle, as an introduction to practice counting skills and one to one correspondence. The expected lesson length is 30 minutes and includes online and offline options. 

Subject:
Early Childhood Development
Elementary Education
Numbers and Operations
Material Type:
Lesson
Author:
Brandee Drahota
Date Added:
07/15/2020
Math and Music
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This resource was created by Emily McManamy, in collaboration with Dawn DeTurk, Hannah Blomstedt, and Julie Albrecht, as part of ESU2's Integrating the Arts project. This project is a four year initiative focused on integrating arts into the core curriculum through teacher education, practice, and coaching.

Subject:
Arts and Humanities
Numbers and Operations
Material Type:
Lesson Plan
Author:
Arts ESU2
Date Added:
02/01/2023
Math and Music
Read the Fine Print
Educational Use
Rating
0.0 stars

All the activities in this lesson are addition and subtraction based. It is not designed to introduce addition and subtraction, rather, to supplement and enrich lessons already being taught. This lesson is not designed to be completed in one sitting. It may be done throughout an entire addition and subtraction unit. These activities may be used as starter activities when introducing new math concepts, particularly those that relate to addition and subtraction.

Subject:
Mathematics
Numbers and Operations
Material Type:
Lesson Plan
Provider:
Utah Education Network
Date Added:
10/22/2013