Updating search results...

Search Resources

787 Results

View
Selected filters:
  • Numbers and Operations
MGTS 113 - Introduction to Quantitative Decision Making - PowerPoint Course Pack
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This resource may be used by any instructor teaching a similar introductory quantitative decision course.Course topics include: basic math and algebra review, trade discounts & cash discounts & markup/markdown, simple interest, review of linear systems and graphing, cost-volume-profit analysis & break-even, linear programming models, compount interest, annuities, and data visualization.Video links are spread throughout the PowerPoint slides and may be used, or removed, at the discretion of the instructor. 

Subject:
Algebra
Finance
Mathematics
Numbers and Operations
Ratios and Proportions
Material Type:
Lecture
Module
Author:
Allan Wesley
Cody Esih
Date Added:
10/07/2024
MGTS 113 - Introduction to Quantitative Decision Making - Practice Questions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This resource may be used by any instructor teaching a similar introductory quantitative decision course.Course topics include: basic math and algebra review, trade discounts & cash discounts & markup/markdown, simple interest, review of linear systems and graphing, cost-volume-profit analysis & break-even, linear programming models, compound interest, annuities, and data visualization.The attached files contain practice questions and solutions.

Subject:
Algebra
Finance
Mathematics
Numbers and Operations
Ratios and Proportions
Material Type:
Homework/Assignment
Module
Author:
Allan Wesley
Cody Esih
Date Added:
10/07/2024
MTH245 - Math for Bio, Mgmt, Soc Science - OER (Public) Version
Unrestricted Use
CC BY
Rating
0.0 stars

A survey course of discrete mathematics for non-physical science majors. Topics include systems of inequalities, linear programming, probability and probability distributions, and an introduction to descriptive statistics. The course emphasizes problem solving through the use of computer spreadsheets.

Subject:
Mathematics
Numbers and Operations
Material Type:
Full Course
Provider:
Linn-Benton Community College
Author:
Mary Campbell
Date Added:
03/28/2016
Making 22 Seventeenths in Different Ways
Unrestricted Use
CC BY
Rating
0.0 stars

This task is a straightforward task related to adding fractions with the same denominator. The main purpose is to emphasize that there are many ways to decompose a fraction as a sum of fractions, similar to decompositions of whole numbers that students should have seen in earlier grades.

Subject:
Mathematics
Numbers and Operations
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
07/15/2012
Making Cookies
Unrestricted Use
CC BY
Rating
0.0 stars

This tasks lends itself very well to multiple solution methods. Students may learn a lot by comparing different methods. Students who are already comfortable with fraction multiplication can go straight to the numeric solutions given below. Students who are still unsure of the meanings of these operations can draw pictures or diagrams.

Subject:
Mathematics
Numbers and Operations
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Making S'Mores
Unrestricted Use
CC BY
Rating
0.0 stars

The purpose of this instructional task is to motivate a discussion about adding fractions and the meaning of the common denominator. The different parts of the task have students moving back and forth between the abstract representation of the fractions and the meaning of the fractions in the context.

Subject:
Mathematics
Numbers and Operations
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
08/10/2012
Making a Ten
Unrestricted Use
CC BY
Rating
0.0 stars

This task requires students to study the make-a-ten strategy that they should already know and use intuitively. In this strategy, knowledge of which sums make a ten, together with some of the properties of addition and subtraction, are used to evaluate sums which are larger than 10.

Subject:
Mathematics
Numbers and Operations
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/02/2013
Making a ten
Unrestricted Use
CC BY
Rating
0.0 stars

Making a 10 provides a technique to help students master single digit addition. The task is designed to help students visualize where the 10's are on a single digit addition table and explain why this is so. This knowledge can then be used to help them learn the addition table.

Subject:
Mathematics
Numbers and Operations
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/02/2013
Maria's Money
Unrestricted Use
CC BY
Rating
0.0 stars

This task provides three types of comparison problems: Those with an unknown difference and two known numbers; those with a known difference and a bigger unknown number; and those with a known difference and smaller unknown number. Students may solve each type using addition or subtraction, although the language in specific problems tends to favor one approach over another.

Subject:
Mathematics
Numbers and Operations
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Math, Grade 6, Equations and Inequalities, Balance Scale As A Mathematical Model
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents solve a classic puzzle about finding a counterfeit coin. The puzzle introduces students to the idea of a scale being balanced when the weight of the objects on both sides is the same and the scale being unbalanced when the objects on one side do not weigh the same as the objects on the other side.Key ConceptsThe concept of an inequality statement can be modeled using an unbalanced scale. The context—weighing a set of coins in order to identify the one coin that weighs less than the others—allows students to manipulate the weight on either side of the scale. In doing so, they are focused on the relationship between two weights—two quantities—and whether or not they are equal.Goals and Learning ObjectivesExplore a balance scale as a model for an equation or an inequality.Introduce formal meanings of equality and inequality.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Equations and Inequalities, Inequality Statements Including Variables
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents represent real-world situations using inequality statements that include a variable.Key ConceptsInequality statements tell you whether values in a situation are greater than or less than a given number and also tell you whether values in the situation can be equal to that number or not.The symbols < and > tell you that the unknown value(s) in a situation cannot be equal to a given number: the unknown value(s) are strictly greater than or less than the number. The inequality x < y means x must be less than y. The inequality x > y means x must be greater than y.The symbols ≤  and ≥ tell you that the unknown value(s) in a situation can also be equal to a given number: the unknown value(s) are less than or equal to, or greater than or equal to, the number. The inequality x ≤ y means x is less than or equal to y. The inequality x ≥ y means x is greater than or equal to y.Goals and Learning ObjectivesUnderstand the inequality symbols <, >, ≤, and ≥.Write inequality statements for real-world situations.ELL: When writing the summary, provide ELLs access to a dictionary and give them time to discuss their summary with a partner before writing, to help them organize their thoughts. Allow ELLs who share the same primary language to discuss in their native language if they wish.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Equations and Inequalities, Representing An Inequality On A Number Line
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents represent inequalities on a number line, find at least one value that makes the inequality true, and write the inequality using words.SWD:When calling on students, be sure to call on ELLs and to encourage them to actively participate. Understand that their pace might be slower or they might be shy or more reluctant to volunteer due to their weaker command of the language.SWD:Thinking aloud is one strategy for making learning visible. When teachers think aloud, they are externalizing their internal thought processes. Doing so may provide students with insights into mathematical thinking and ways of tackling problems. It also helps to model accurate mathematical language.Key ConceptsInequalities, like equations, have solutions. An arrow on the number line—pointing to the right for greater values and to the left for lesser values—can be used to show that there are infinitely many solutions to an inequality.The solutions to x < a are represented on the number line by an arrow pointing to the left from an open circle at a.Example: x < 2The solutions to x > a are represented on the number line with an arrow pointing to the right from an open circle at a.Example: x > 2The solutions to x ≤ a are represented on the number line with an arrow pointing to the left from a closed circle at a.Example: x ≤ 2The solutions to x ≥ a are represented on the number line with an arrow pointing to the right from a closed circle at a.Example: x ≥ 2Goals and Learning ObjectivesRepresent an inequality on a number line and using words.Understand that inequalities have infinitely many solutions.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Expressions, Common Multiples
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents use a geometric model to investigate common multiples and the least common multiple of two numbers.Key ConceptsA geometric model can be used to investigate common multiples. When congruent rectangular cards with whole-number lengths are arranged to form a square, the length of the square is a common multiple of the side lengths of the cards. The least common multiple is the smallest square that can be formed with those cards.For example, using six 4 × 6 rectangles, a 12 × 12 square can be formed. So, 12 is a common multiple of both 4 and 6. Since the 12 × 12 square is the smallest square that can be formed, 12 is the least common multiple of 4 and 6.Common multiples are multiples that are shared by two or more numbers. The least common multiple (LCM) is the smallest multiple shared by two or more numbers.Goals and Learning ObjectivesUse a geometric model to understand least common multiples.Find the least common multiple of two whole numbers equal to or less than 12.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Expressions, Reviewing The Greatest Common Factor
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use a geometric model to investigate common factors and the greatest common factor of two numbers.Key ConceptsA geometric model can be used to investigate common factors. When congruent squares fit exactly along the edge of a rectangular grid, the side length of the square is a factor of the side length of the rectangular grid. The greatest common factor (GCF) is the largest square that fits exactly along both the length and the width of the rectangular grid. For example, given a 6-centimeter × 8-centimeter rectangular grid, four 2-centimeter squares will fit exactly along the length without any gaps or overlaps. So, 2 is a factor of 8. Three 2-centimeter squares will fit exactly along the width, so 2 is a factor of 6. Since the 2-centimeter square is the largest square that will fit along both the length and the width exactly, 2 is the greatest common factor of 6 and 8. Common factors are all of the factors that are shared by two or more numbers.The greatest common factor is the greatest number that is a factor shared by two or more numbers.Goals and Learning ObjectivesUse a geometric model to understand greatest common factor.Find the greatest common factor of two whole numbers equal to or less than 100.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Fractions and Decimals, Divide a Fraction by a Fraction
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students explore methods of dividing a fraction by a unit fraction.Key ConceptsIn this lesson and in Lesson 5, students explore dividing a fraction by a fraction.In this lesson, we focus on the case in which the divisor is a unit fraction. Understanding this case makes it easier to see why we can divide by a fraction by multiplying by its reciprocal. For example, finding 34÷15 means finding the number of fifths in 34. In this lesson, students will see that this is 34 × 5.Students learn and apply several methods for dividing a fraction by a unit fraction, such as 23÷14.Model 23. Change the model and the fractions in the problem to twelfths: 812÷312. Then find the number of groups of 3 twelfths in 8 twelfths. This is the same as finding 8 ÷ 3.Reason that since there are 4 fourths in 1, there must be 23 × 4 fourths in 23. This is the same as using the multiplicative inverse.Rewrite both fractions so they have a common denominator: 23÷14=812÷312. The answer is the quotient of the numerators. This is the numerical analog to modeling.Goals and Learning ObjectivesUse models and other methods to divide fractions by unit fractions

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Fractions and Decimals, Division
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use models and the idea of dividing as making equal groups to divide a fraction by a whole number.SWD: Some students with disabilities will benefit from a preview of the goals in each lesson. Students can highlight the critical features or concepts in order to help them pay close attention to salient information.Key ConceptsWhen we divide a whole number by a whole number n, we can think of making n equal groups and finding the size of each group. We can think about dividing a fraction by a whole number in the same way.8 ÷ 4 = 2 When we make 4 equal groups, there are 2 wholes in each group.89÷4=29  When we make 4 equal groups, there are 2 ninths in each group.When the given fraction cannot be divided into equal groups of unit fractions, we can break each unit fraction part into smaller parts to form an equivalent fraction.34 ÷ 6 = ?     68 ÷ 6 = ?     68 ÷ 6 = 18  Students see that, in general, we can divide a fraction by a whole number by dividing the numerator by the whole number. Note that this is consistent with the “multiply by the reciprocal” method.ab÷n=a÷nb=anb=an×1b=an×b=ab×1nGoals and Learning ObjectivesUse models to divide a fraction by a whole number.Learn general methods for dividing a fraction by a whole number without using a model. 

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Fractions and Decimals, Fractions and Division in Word Problems
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students solve word problems that require dividing and multiplying with fractions and mixed numbers.Key ConceptsStudents apply their knowledge about multiplying and dividing fractions to solve word problems. This includes applying the general methods for dividing fractions learned in previous lessons:Rewrite the dividend and the divisor so they have a common denominator. The answer to the original division will be the quotient of the numerators.Multiply the dividend by the reciprocal of the divisor.Goals and Learning ObjectivesApply knowledge of fraction multiplication and division to solve word problems.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Fractions and Decimals, Gallery Problems
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Gallery OverviewAllow students who have a clear understanding of the content in the unit to work on Gallery problems of their choosing. You can use this time to provide additional help to students who need review of the unit's concepts or to assist students who may have fallen behind on work.Gallery DescriptionTiling a FloorStudents determine which size tiles are cheaper to use to tile a floor with given dimensions.Adam's HomeworkStudents find and correct an error in a whole number division problem.Then and NowStudents solve comparison problems involving census data from 1940 and 2010.Graphical MultiplicationGiven points m and p on a number line, students must locate m × p.When Does Zero Matter?Students must determine how the placement of 0 affects the value of a number.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015