Updating search results...

Search Resources

139 Results

View
Selected filters:
  • 6th-grade-mathematics
Math, Grade 6, Expressions, Common Multiples
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents use a geometric model to investigate common multiples and the least common multiple of two numbers.Key ConceptsA geometric model can be used to investigate common multiples. When congruent rectangular cards with whole-number lengths are arranged to form a square, the length of the square is a common multiple of the side lengths of the cards. The least common multiple is the smallest square that can be formed with those cards.For example, using six 4 × 6 rectangles, a 12 × 12 square can be formed. So, 12 is a common multiple of both 4 and 6. Since the 12 × 12 square is the smallest square that can be formed, 12 is the least common multiple of 4 and 6.Common multiples are multiples that are shared by two or more numbers. The least common multiple (LCM) is the smallest multiple shared by two or more numbers.Goals and Learning ObjectivesUse a geometric model to understand least common multiples.Find the least common multiple of two whole numbers equal to or less than 12.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Expressions, Distributive Properties of Geometric Models
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use a rectangular area model to understand the distributive property. They watch a video to find how to express the area of a rectangle in two different ways. Then they find the area of rectangular garden plots in two ways.Key ConceptsThe distributive property can be used to rewrite an expression as an equivalent expression that is easier to work with. The distributive property states that multiplication distributes over addition.Applying multiplication to quantities that have been combined by addition: a(b + c)Applying multiplication to each quantity individually, and then adding the products together: ab + acThe distributive property can be represented with a geometric model. The area of this rectangle can be found in two ways: a(b + c) or ab + ac. The equality of these two expressions, a(b + c) = ab + ac, is the distributive property.Goals and Learning ObjectivesUse a geometric model to understand the distributive property.Write equivalent expressions using the distributive property.

Subject:
Algebra
Geometry
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Expressions, Evaluating Expressions
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students analyze how two different calculators get different values for the same numerical expression. In the process, students recognize the need for following the same conventions when evaluating expressions.Key ConceptsMathematical expressions express calculations with numbers (numerical expressions) or sometimes with letters representing numbers (algebraic expressions).When evaluating expressions that have more than one operation, there are conventions—called the order of operations—that must be followed:Complete all operations inside parentheses first.Evaluate exponents.Then complete all multiplication and division, working from left to right.Then complete all addition and subtraction, working from left to right.These conventions allow expressions with more than one operation to be evaluated in the same way by everyone. Because of these conventions, it is important to use parentheses when writing expressions to indicate which operation to do first. If there are nested parentheses, the operations in the innermost parentheses are evaluated first. Understanding the use of parentheses is especially important when interpreting the associative and the distributive properties.Goals and Learning ObjectivesEvaluate numerical expressions.Use parentheses when writing expressions.Use the order of operations conventions.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Expressions, Expressions in Words & Symbols
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students do a card sort in which they match expressions in words with their equivalent algebraic expressions.Key ConceptsA mathematical expression that uses letters to represent numbers is an algebraic expression.A letter used in place of a number in an expression is called a variable.An algebraic expression combines both numbers and letters using the arithmetic operations of addition (+), subtraction (–), multiplication (·), and division (÷) to express a quantity.Words can be used to describe algebraic expressions.There are conventions for writing algebraic expressions:The product of a number and a variable lists the number first with no multiplication sign. For example, the product of 5 and n is written as 5n, not n5.The product of a number and a factor in parentheses lists the number first with no multiplication sign. For example, write 5(x + 3), not (x + 3)5.For the product of 1 and a variable, either write the multiplication sign or do not write the "1." For example, the product of 1 and z is written either 1 ⋅ z or z, not 1z.Goals and Learning ObjectivesTranslate between expressions in words and expressions in symbols.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Expressions, Gallery Problems Exercise
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson GuideAllow students who have a clear understanding of the content thus far in the unit to work on Gallery problems of their choosing. You can then use this time to provide additional help to students who need review of the unit's concepts or to assist students who may have fallen behind on work.Gallery DescriptionsBuilding BridgesStudents will examine a pattern and use expressions to show how to continue the pattern.Patterns in a TableStudents will complete a table by noticing relationships within the table and using those relationships to fill in empty cells in the table.Expressions for Perimeter and AreaStudents will write equivalent expressions for the perimeters and areas of various rectangles.Multiplication TableStudents will complete an unusual multiplication table by writing the algebraic expression that results from multiplying the terms given in the top row by the ones given in the left column.Garden BedsStudents will find the number of square tiles needed to pave around various configurations of rectangular garden beds. Then, students will write an algebraic equation to represent the number of square tiles needed to go around any number of plants in a single row.Telephone TreeStudents will solve problems about a telephone tree and use expressions to show the number of calls completed after a given number of rounds of calling.Stacks of DVDsStudents will write an expression to describe the width of a stack of DVDs, and then they will evaluate the expression for different numbers of DVD cases and boxed sets.Exponent Card SortStudents will complete a card sort that will give them practice working with exponents. Then they will use a set of blank cards to complete sets that purposely have one or two representations missing.Matching Words and ExpressionsStudents will match a verbal statement with its expression in this card sort.Investigating Factors and MultiplesStudents will investigate an interesting property of numbers involving the greatest common factor and the least common multiple.Fourth RockStudents will solve a problem about how long it will take for two imaginary planets in an imaginary solar system to align so that they are at their closest distance from each other.Factors of a NumberStudents will decide whether a mathematical claim about factors and multiples is true or false based on given criteria.Common FactorsStudents will look at two unknown numbers with a greatest common factor of 20 and determine what other factors must be common to the two unknown numbers. Students will use their answer to make a generalization.History of VariablesStudents will research the history of variables. When were they first used? Where were they first used? Who used them?Create a VideoStudents will use their creative powers to produce a video about expressions.

Subject:
Mathematics
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Expressions, Math Tricks
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students explore what makes a math trick work by analyzing verbal math expressions that describe each step in the trick.Key ConceptsWords can be used to describe mathematical operations.In a math trick, a person starts with a number, follows mathematical directions given in words, and ends up with the original number.Math tricks can be explained by examining the mathematical expressions that represent the verbal directions.Goals and Learning ObjectivesExplore verbal expressions.Predict and test which sets of expressions will result in the original number.

Subject:
Mathematics
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Expressions, Mathematical Vocabulary
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students play an Expressions Game in which they describe expressions to their partners using the vocabulary of expressions: term, coefficient, exponent, constant, and variable. Their partners try to write the correct expressions based on the descriptions.Key ConceptsMathematical expressions have parts, and these parts have names. These names allow us to communicate with others in a precise way.A variable is a symbol (usually a letter) in an expression that can be replaced by a number.A term is a number, a variable, or a product of numbers and variables. Terms are separated by the operator symbols + (plus) and – (minus).A coefficient is a symbol (usually a number) that multiplies the variable in an algebraic expression.An exponent tells how many copies of a number or variable are multiplied together.A constant is a number. In an expression, it can be a constant term or a constant coefficient. In the expression 2x + 3, 2 is a constant coefficient and 3 is a constant term.Goals and Learning ObjectivesIdentify parts of an expression using appropriate mathematical vocabulary.Write expressions that fit specific descriptions (for example, the expression is the sum of two terms each with a different variable).

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Expressions, Peer Review
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students critique the work of other students and revise their own work based on feedback from the teacher and peers.Key ConceptsConcepts from previous lessons are integrated into this unit task: rewriting expressions, using parentheses, and using the distributive property. Students apply their knowledge, review their work, and make revisions based on feedback from you and their peers. This process creates a deeper understanding of the concepts.Goals and Learning ObjectivesApply knowledge of expressions to correct the work of other students.Track and review the choice of strategy when problem solving.

Subject:
Mathematics
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Expressions, Reviewing The Greatest Common Factor
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use a geometric model to investigate common factors and the greatest common factor of two numbers.Key ConceptsA geometric model can be used to investigate common factors. When congruent squares fit exactly along the edge of a rectangular grid, the side length of the square is a factor of the side length of the rectangular grid. The greatest common factor (GCF) is the largest square that fits exactly along both the length and the width of the rectangular grid. For example, given a 6-centimeter × 8-centimeter rectangular grid, four 2-centimeter squares will fit exactly along the length without any gaps or overlaps. So, 2 is a factor of 8. Three 2-centimeter squares will fit exactly along the width, so 2 is a factor of 6. Since the 2-centimeter square is the largest square that will fit along both the length and the width exactly, 2 is the greatest common factor of 6 and 8. Common factors are all of the factors that are shared by two or more numbers.The greatest common factor is the greatest number that is a factor shared by two or more numbers.Goals and Learning ObjectivesUse a geometric model to understand greatest common factor.Find the greatest common factor of two whole numbers equal to or less than 100.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Expressions, Substituting Numbers for Letters
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students express the lengths of trains as algebraic expressions and then substitute numbers for letters to find the actual lengths of the trains.Key ConceptsAn algebraic expression can be written to represent a problem situation. More than one algebraic expression may represent the same problem situation. These algebraic expressions have the same value and are equivalent.To evaluate an algebraic expression, a specific value for each variable is substituted in the expression, and then all the calculations are completed using the order of operations to get a single value.Goals and Learning ObjectivesEvaluate expressions for the given values of the variables.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Expressions, Using Variables to Represent Measurements
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students write an expression for the length of a train, using variables to represent the lengths of the different types of cars.Key ConceptsA numerical expression consists of a number or numbers connected by the arithmetic operations of addition, subtraction, multiplication, division, and exponentiation.An algebraic expression uses letters to represent numbers.An algebraic expression can be written to represent a problem situation. Sometimes more than one algebraic expression may represent the same problem situation. These algebraic expressions have the same value and are equivalent.The properties of operations can be used to make long algebraic expressions shorter:The commutative property of addition states that changing the order of the addends does not change the end result:a + b = b + a.The associative property of addition states that changing the grouping of the addends does not change the end result:(a + b) + c = a + (b + c).The distributive property of multiplication over addition states that multiplying a sum by a number gives the same result as multiplying each addend by the number and then adding the products together:a(b + c) = ab + ac.Goals and Learning ObjectivesWrite algebraic expressions that describe lengths of freight trains.Use properties of operations to shorten those expressions.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Expressions, Writing, Representing & Evaluating Expressions
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students represent problem situations using expressions and then evaluate the expressions for the given values of the variables.Key ConceptsAn algebraic expression can be written to represent a problem situation.To evaluate an algebraic expression, a specific value for each variable is substituted in the expression, and then all the calculations are completed using the order of operations to get a single value.Goals and Learning ObjectivesDevelop fluency in writing expressions to represent situations and in evaluating the expressions for given values.

Subject:
Algebra
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Fractions and Decimals
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Fractions and Decimals

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Multiply and divide whole numbers and decimals.
Multiply a fraction by a whole number.
Multiply a fraction by another fraction.
Write fractions in equivalent forms, including converting between improper fractions and mixed numbers.
Understand the meaning and structure of decimal numbers.

Lesson Flow

This unit extends students’ learning from Grade 5 about operations with fractions and decimals.

The first lesson informally introduces the idea of dividing a fraction by a fraction. Students are challenged to figure out how many times a 14-cup measuring cup must be filled to measure the ingredients in a recipe. Students use a variety of methods, including adding 14 repeatedly until the sum is the desired amount, and drawing a model. In Lesson 2, students focus on dividing a fraction by a whole number. They make a model of the fraction—an area model, bar model, number line, or some other model—and then divide the model into whole numbers of groups. Students also work without a model by looking at the inverse relationship between division and multiplication. Students explore methods for dividing a whole number by a fraction in Lesson 3, for dividing a fraction by a unit fraction in Lesson 4, and for dividing a fraction by another fraction in Lesson 6. Students examine several methods and models for solving such problems, and use models to solve similar problems.

Students apply their learning to real-world contexts in Lesson 6 as they solve word problems that require dividing and multiplying mixed numbers. Lesson 7 is a Gallery lesson in which students choose from a number of problems that reinforce their learning from the previous lessons.

Students review the standard long-division algorithm for dividing whole numbers in Lesson 8. They discuss the different ways that an answer to a whole number division problem can be expressed (as a whole number plus a remainder, as a mixed number, or as a decimal). Students then solve a series of real-world problems that require the same whole number division operation, but have different answers because of how the remainder is interpreted.

Students focus on decimal operations in Lessons 9 and 10. In Lesson 9, they review addition, subtraction, multiplication, and division with decimals. They solve decimal problems using mental math, and then work on a card sort activity in which they must match problems with diagram and solution cards. In Lesson 10, students review the algorithms for the four basic decimal operations, and use estimation or other methods to place the decimal points in products and quotients. They solve multistep word problems involving decimal operations.

In Lesson 11, students explore whether multiplication always results in a greater number and whether division always results in a smaller number. They work on a Self Check problem in which they apply what they have learned to a real-world problem. Students consolidate their learning in Lesson 12 by critiquing and improving their work on the Self Check problem from the previous lesson. The unit ends with a second set of Gallery problems that students complete over two lessons.

Subject:
Mathematics
Ratios and Proportions
Material Type:
Unit of Study
Provider:
Pearson
Math, Grade 6, Fractions and Decimals, Cooking with Fractions
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students determine how many times they would need to fill a quarter cup to measure the ingredients in a recipe.Key ConceptsThis lesson informally introduces the idea of dividing by a fraction. Students must figure out how many times a quarter cup must be filled to measure the ingredients in a recipe. This involves dividing each amount by 14. Here are some methods students might use:Add 14 repeatedly until the sum is the desired amount. Count the number of 14s that were added.Start with the amount in the recipe. Subtract 14 repeatedly until the difference is 0. Count the 14s that were subtracted.Draw a model (e.g., a bar or a number line model) to represent the amount in the recipe. Divide it into fourths and count the number of fourths.Goals and Learning ObjectivesLearn how to divide by a fraction.

Subject:
Ratios and Proportions
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Fractions and Decimals, Decimal Multiplication and Division
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students solve decimal multiplication and division problems related to the basic fact 3 × 7 = 21.Students match cards that represent word problems, visual models, and numerical solutions to problems that include the numbers 0.8 and 0.2 for all four operations.Key ConceptsNo new mathematics is introduced in this lesson. Students apply their knowledge about decimal operations.Goals and Learning ObjectivesUse reasoning and mental math to solve problems.Solve word problems involving simple addition, subtraction, multiplication, and division with decimals.

Subject:
Mathematics
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Fractions and Decimals, Divide a Fraction by a Fraction
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students explore methods of dividing a fraction by a unit fraction.Key ConceptsIn this lesson and in Lesson 5, students explore dividing a fraction by a fraction.In this lesson, we focus on the case in which the divisor is a unit fraction. Understanding this case makes it easier to see why we can divide by a fraction by multiplying by its reciprocal. For example, finding 34÷15 means finding the number of fifths in 34. In this lesson, students will see that this is 34 × 5.Students learn and apply several methods for dividing a fraction by a unit fraction, such as 23÷14.Model 23. Change the model and the fractions in the problem to twelfths: 812÷312. Then find the number of groups of 3 twelfths in 8 twelfths. This is the same as finding 8 ÷ 3.Reason that since there are 4 fourths in 1, there must be 23 × 4 fourths in 23. This is the same as using the multiplicative inverse.Rewrite both fractions so they have a common denominator: 23÷14=812÷312. The answer is the quotient of the numerators. This is the numerical analog to modeling.Goals and Learning ObjectivesUse models and other methods to divide fractions by unit fractions

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Fractions and Decimals, Division
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use models and the idea of dividing as making equal groups to divide a fraction by a whole number.SWD: Some students with disabilities will benefit from a preview of the goals in each lesson. Students can highlight the critical features or concepts in order to help them pay close attention to salient information.Key ConceptsWhen we divide a whole number by a whole number n, we can think of making n equal groups and finding the size of each group. We can think about dividing a fraction by a whole number in the same way.8 ÷ 4 = 2 When we make 4 equal groups, there are 2 wholes in each group.89÷4=29  When we make 4 equal groups, there are 2 ninths in each group.When the given fraction cannot be divided into equal groups of unit fractions, we can break each unit fraction part into smaller parts to form an equivalent fraction.34 ÷ 6 = ?     68 ÷ 6 = ?     68 ÷ 6 = 18  Students see that, in general, we can divide a fraction by a whole number by dividing the numerator by the whole number. Note that this is consistent with the “multiply by the reciprocal” method.ab÷n=a÷nb=anb=an×1b=an×b=ab×1nGoals and Learning ObjectivesUse models to divide a fraction by a whole number.Learn general methods for dividing a fraction by a whole number without using a model. 

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Fractions and Decimals, Fractions and Division in Word Problems
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students solve word problems that require dividing and multiplying with fractions and mixed numbers.Key ConceptsStudents apply their knowledge about multiplying and dividing fractions to solve word problems. This includes applying the general methods for dividing fractions learned in previous lessons:Rewrite the dividend and the divisor so they have a common denominator. The answer to the original division will be the quotient of the numerators.Multiply the dividend by the reciprocal of the divisor.Goals and Learning ObjectivesApply knowledge of fraction multiplication and division to solve word problems.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Fractions and Decimals, Gallery Problems
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Gallery OverviewAllow students who have a clear understanding of the content in the unit to work on Gallery problems of their choosing. You can use this time to provide additional help to students who need review of the unit's concepts or to assist students who may have fallen behind on work.Gallery DescriptionStew RecipeStudents use fraction operations to help Molly figure out if she has enough potatoes to make stew for all the guests at her party.Multiply or Divide?Students match descriptions of situations to multiplication and division situations.Card SortStudents find the diagram, expression, and answer that match given word problems.Complex FractionsStudents learn about complex fractions and how they are useful for dividing fractions.

Subject:
Ratios and Proportions
Material Type:
Lesson Plan
Date Added:
09/21/2015
Math, Grade 6, Fractions and Decimals, Gallery Problems
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Gallery OverviewAllow students who have a clear understanding of the content in the unit to work on Gallery problems of their choosing. You can use this time to provide additional help to students who need review of the unit's concepts or to assist students who may have fallen behind on work.Gallery DescriptionTiling a FloorStudents determine which size tiles are cheaper to use to tile a floor with given dimensions.Adam's HomeworkStudents find and correct an error in a whole number division problem.Then and NowStudents solve comparison problems involving census data from 1940 and 2010.Graphical MultiplicationGiven points m and p on a number line, students must locate m × p.When Does Zero Matter?Students must determine how the placement of 0 affects the value of a number.

Subject:
Numbers and Operations
Material Type:
Lesson Plan
Date Added:
09/21/2015