Updating search results...

Search Resources

493 Results

View
Selected filters:
  • Hydrology
Optics Lab
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students will calculate the index of refraction of water by measuring the angles of incidence and refraction of light as it passes from air to water. They will follow directions to set up the experiment with cheaply available materials, make several measurements, then answer follow-up questions regarding the mathematical relationship between angles of incidence and refraction, experimental error and uncertainty.

Subject:
Applied Science
Environmental Science
Hydrology
Physical Geography
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Eliza Richardson
Date Added:
01/20/2023
The Other Water Cycle
Read the Fine Print
Educational Use
Rating
0.0 stars

For students that have already been introduced to the water cycle this lesson is intended as a logical follow-up. Students will learn about human impacts on the water cycle that create a pathway for pollutants beginning with urban development and joining the natural water cycle as surface runoff. The extent of surface runoff in an area depends on the permeability of the materials in the ground. Permeability is the degree to which water or other liquids are able to flow through a material. Different substances such as soil, gravel, sand, and asphalt have varying levels of permeability. In this lesson, along with the associated activities, students will learn about permeability and compare the permeability of several different materials for the purpose of engineering landscape drainage systems.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Sherry McGauvran
Usman Zaheer
Date Added:
09/18/2014
PEI ELA Performance Task SBAC (Grade 6-7): Water Quality Monitoring
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students will write an informational essay explaining the What, Why and How of water monitoring. They will use information from videos and articles to write an essay. Includes Teacher directions and scoring notes.

Subject:
Ecology
Elementary Education
English Language Arts
Environmental Science
Environmental Studies
Hydrology
Material Type:
Activity/Lab
Author:
Pacific Education Institute
Date Added:
11/15/2023
Particle Size Analysis, Soil Texture, and Hydraulic Conductivity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Lab: Particle Size Analysis, Soil Texture, and Hydraulic Conductivity

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Career and Technical Education
Environmental Studies
Hydrology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Joseph Asante
Date Added:
08/06/2019
Pathogenic Microorganisms in Water
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Pathogenic Microorganisms in Water: Traditionally, groundwater has been used without treatment because the soil acts as a filter, removing pathogenic microorganisms. Some potential sources of pathogens (or disease causing organisms) in groundwater include septic tanks, leaking sewer lines, sewage sludge, intentional groundwater recharge with sewage, irrigation with sewage, direct injection of sewage, domestic solid waste disposal (landfills) and sewage oxidation ponds. The objective of the session is to introduce hydrogeologist to the types of microorganisms, sources of pathogens, and a simple exercise that can be incorporated into a hydrogeology class.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Chemistry
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Melissa Lenczewski
Date Added:
01/25/2021
Permeable Pavement
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate how different riparian ground covers, such as grass or pavement, affect river flooding. They learn about permeable and impermeable materials through the measurement how much water is absorbed by several different household materials in a model river. Students use what they learn to make recommendations for engineers developing permeable pavement. Also, they consider several different limitations for design in the context of a small community.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Kaelin Cawley
Malinda Schaefer Zarske
Tim Nicklas
Date Added:
10/14/2015
Physical Geology Lecture Tutorials (2nd edition) – Haroldson Research Group
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

These “Lecture Tutorials” are designed as illustrative review of individual lectures, followed with a series of questions aimed at addressing student misconceptions. 'Think Deeper' sections Foster personal connections to subject matter, and promote discussion. The general idea is that you lecture for 15-20 minutes, the students work through the lecture tutorials for 15-20 minutes, then the class discusses the answers together. These offer a consistent active learning formative assessment, and also act as study guides for students.

Subject:
Applied Science
Career and Technical Education
Environmental Science
Environmental Studies
Geology
Hydrology
Physical Geography
Physical Science
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Lecture Notes
Student Guide
Author:
Erik L. Haroldson
Date Added:
07/27/2021
The Physics of Fluid Mechanics
Read the Fine Print
Educational Use
Rating
0.0 stars

From drinking fountains at playgrounds, water systems in homes, and working bathrooms at schools to hydraulic bridges and levee systems, fluid mechanics are an essential part of daily life. Fluid mechanics, the study of how forces are applied to fluids, is outlined in this unit as a sequence of two lessons and three corresponding activities. The first lesson provides a basic introduction to Pascal's law, Archimedes' principle and Bernoulli's principle and presents fundamental definitions, equations and problems to solve with students, as well as engineering applications. The second lesson provides a basic introduction to above-ground storage tanks, their pervasive use in the Houston Ship Channel, and different types of storage tank failure in major storms and hurricanes. The unit concludes with students applying what they have learned to determine the stability of individual above-ground storage tanks given specific storm conditions so they can analyze their stability in changing storm conditions, followed by a project to design their own storage tanks to address the issues of uplift, displacement and buckling in storm conditions.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Plotting Florida River Data Using Excel
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students graph existing water quality data using MS Excel, and use the graphs to discuss the changes in discharge, sediment load, and dissolved load along the length of the river and over time. This exercise prepares students to analyze and discuss their own data later in the semester.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Chemistry
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Kim Hannula
Date Added:
08/30/2019
Plume Busters
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Environmental and earth science students seldom have an opportunity to apply what they learn in class to the solution of real-world problems. With NSF support we have developed the prototype Plume Busters software, in which students take on the role of an environmental consultant. Following a pipeline spill, the environmental consultant is hired by the pipeline owner to locate the resulting plume created by the spill and remediate the contaminated aquifer at minimum monetary and time cost. The contamination must be removed from the aquifer before it reaches the river and eventually a downstream public water supply. The software consists of an interactive Java application and accompanying HTML linked pages. The application simulates movement of a plume from a pipeline break through a shallow alluvial aquifer towards the river. The accompanying web pages establish the simulated contamination scenario and provide students with background material on ground-water flow and transport principles. To make the role-play more realistic, the student must consider cost and time when making decisions about siting observation wells and wells for the pump-and-treat remediation system.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Career and Technical Education
Economics
Environmental Studies
Hydrology
Life Science
Physical Science
Social Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Allen Macfarlane
Date Added:
11/19/2021
Pop Bottle Hydrograph
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Create hydrograph and explore changes in physical parameters on form of hydrograph. Set up is easy: water is sprinkled into a model watershed (sand in pop bottle) and allowed to dribble onto cheap digital scale. Students record weight of water over time, convert to volume, and then create hydrograph. More complicated pop-bottle watersheds can model effect of urbanization, antecedent moisture, changes in precipitation, changes in "soil" porosity/permeability, etc. SEE TEACHING MATERIALS AND TIPS FOR DETAILS!

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Hydrology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Katherine Scharer
Date Added:
08/30/2019
Porosity and Permeability
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The students are exposed to a brief (approx. 5 minute) introduction/presentation on aquifers and groundwater including their geographical context, structure, and vocabulary.

The students receive everyday materials with different properties: Styrofoam block, scrubbing pad, etc, and a dropper bottle filled with water. They are not initially told what to do, but instead asked what they are going to do. The idea is to use the dropper bottle to put water on the objects and notice if the water passes through or not? They are also encouraged to notice any physical features that may be responsible for these behaviors. Students typically won't talk to each other at first and won't know what to do. Asking them guided questions usually encourages conversation between the students. They can also be asked what other everyday objects could be used for this exercise.

After they have explore everyday objects, they are introduced to a handsample of granite and a sandstone. Although they have not been exposed to rocks in lab, they can usually identify the granite right away, and the sandstone when about the size of the grains. They then will discuss the physical properties of the rocks and hypothesize what is more porous and permeable. They test this with the water dropper.

Finally, as a class, we discuss that something that is porous and permeable like a sandstone makes a good aquifer, and where good aquifers are located.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Hydrology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Rebecca Witherow
Date Added:
08/30/2020
Porosity and Water Flow in Soils
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Three different types of sediments will be taken and the porosity and water flow rate for each type will be determined. From this activity, students will understand concepts of porosity and water flow through soil material.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Hydrology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Tej Gautam
Date Added:
02/07/2022
Prework for Rivers and Streams Lab (Intro Geology)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In order to give Introductory Geology (Physical Geology) undergraduate non-majors students experience and confidence in using basic algebra to calculate very simple stream flow properties, we use a prework assignment prior to the Rivers and Streams Lab. Prework is a worksheet assigned 2 weeks in advance, which asks students to calculate velocity and discharge as well as unit conversions and calculations of stream load. The questions are put into the context of activities they completed earlier in the semester during visits to the stream (on campus) so questions are relevant to their previous experiences. The prework timeframe gives students the opportunity to seek extra help from their instructor prior to the lab period in which they will make additional measurements, similar calcualations and interpretations of their data.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Geoscience
Hydrology
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Rachel Teasdale
Date Added:
08/26/2019
Protect Your Body, Filter Your Water!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experience the steps of the engineering design process as they design solutions for a real-world problem that could affect their health. After a quick review of the treatment processes that municipal water goes through before it comes from the tap, they learn about the still-present measurable contamination of drinking water due to anthropogenic (human-made) chemicals. Substances such as prescription medication, pesticides and hormones are detected in the drinking water supplies of American and European metropolitan cities. Using chlorine as a proxy for estrogen and other drugs found in water, student groups design and test prototype devices that remove the contamination as efficiently and effectively as possible. They use plastic tubing and assorted materials such as activated carbon, cotton balls, felt and cloth to create filters with the capability to regulate water flow to optimize the cleaning effect. They use water quality test strips to assess their success and redesign for improvement. They conclude by writing comprehensive summary design reports.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeanne Hubelbank
Kristen Billiar
Terri Camesano
Timothy S. Vaillancourt
Date Added:
10/14/2015
Protecting Our City with Levees
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and build their own model levees. Acting as engineers for their city, teams create sturdy barriers to prevent water from flooding a city in the event of a hurricane.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Brian Kay
Denise W. Carlson
Janet Yowell
Karen King
Katherine Beggs
Date Added:
10/14/2015
Public Information Campaign: Soil Erosion, Conservation, and Watershed Health
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students in groups of two create a 4-minute educational video, brochure, and poster on an aspect of soil erosion, soil conservation, and/or watershed health for agricultural regions within the midwestern states. This is a half term project and the materials are presented in a forum towards the end of the semester. The project is aimed to help students learn to pitch science to a wide audience and provide practice (indirectly) applying scientific principles to conservation efforts.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Business and Communication
Career and Technical Education
Environmental Studies
Hydrology
Life Science
Management
Physical Geography
Physical Science
Political Science
Social Science
Material Type:
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Kathryn Szramek
Date Added:
08/06/2019
Pump Test
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students run a pump test and interpret the results as drawdown curves and hydraulic conductivity measurements.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Hydrology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Mary Savina
Date Added:
08/29/2019
Pumping Stations and Transport Pipelines
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Water transport through pipes, pressure losses, (pressure) network design and building, pump selection, pumping stations, power supply, quantitative reliability, operation and maintenance.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Assessment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
J.H.G. Vreeburg
Date Added:
02/15/2016
Quantifying Groundwater Baseflow and Improving Math Skills through a Stream-Discharge Exercise
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In week one of the exercise students determine stream discharge by doing some tedious, but simple hand calculations using data sets provided by the instructor. The following week is designed to be more hands-on. Here, they collect their own field data and create a spreadsheet to perform the calculations more efficiently and accurately. By collecting the data themselves, students gain a more thorough understanding of how stream discharge is both measured and computed; they also learn how the results can be used to determine groundwater baseflow. The fact they do hand calculations prior to creating the spreadsheet helps build their math skills and reduces the "black-box" effect that often develops when using software for data analysis. Students also gain valuable experience creating spreadsheets and learn how this tool can be used to perform repetitive computations more efficiently and with less error. Finally, this exercise asks students to consider the accuracy of their replicate field measurements through a series of questions related to their standard deviation and percent error calculations.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Hydrology
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
James Reichard
Date Added:
08/27/2020