The point of this task is to emphasize the grouping structure of …
The point of this task is to emphasize the grouping structure of the base-ten number system, and in particular the crucial fact that 10 tens make 1 hundred.
The goal of this task is to look for structure and identify …
The goal of this task is to look for structure and identify patterns and then try to find the mathematical explanation for this. This problem examines the ''checkerboard'' pattern of even and odd numbers in a single digit multiplication table.
This task provides a context where it is appropriate for students to …
This task provides a context where it is appropriate for students to subtract fractions with a common denominator; it could be used for either assessment or instructional purposes.
The purpose of this task is for students to select 2 numbers …
The purpose of this task is for students to select 2 numbers from a set of 3 that sum to 9. The task can be completed for sums equaling any number. Teachers may choose to ask students to write the simple equations they select.
The purpose of this task is to have students add mixed numbers …
The purpose of this task is to have students add mixed numbers with like denominators. This task illustrates the different kinds of solution approaches students might take to such a task.
This lesson is about properties of quadrilaterals and learning to investigate, formulate, …
This lesson is about properties of quadrilaterals and learning to investigate, formulate, conjecture, justify, and ultimately prove mathematical theorems. Students will: Analyze characteristics and properties of two- and three-dimensional geometric shapes; develop mathematical arguments about geometric relationships; and apply appropriate techniques, tools, and formulas to determine measurements.Explore relationships among classes of two- and three-dimensional geometric objects, make and test conjectures about them, and solve problems involving them. Employ forms of mathematical reasoning and proof appropriate to the solution of the problem at hand, including deductive and inductive reasoning, making and testing conjectures, and using counter examples and indirect proof. Identify, formulate and confirm conjectures. Establish the validity of geometric conjectures using deduction, prove theorems, and critique arguments made by others. (9th/10th Grade Math)
This lesson is about ratios and proportions using candy boxes as well …
This lesson is about ratios and proportions using candy boxes as well as a recipe for making candy as situations to be considered. It addresses many Mathematical Reasoning standards and asks students to: Use models to understand fractions and to solve ratio problems; think about a ratio as part/part model and to think about the pattern growing in equal groups or a unit composed of the sum of the parts; find a scale factor and apply it to a ratio. (5th Grade Math)
This lesson focuses on students making decisions about what tools to apply …
This lesson focuses on students making decisions about what tools to apply to solve different problems related to quadratic expressions and equations. It is also intended to build awareness of the form an answer will take in order to help students make sense of the kind of problem they are solving. (9th/10th/11th Grade Math)
In this number tracing activity students create a rainbow number line. This …
In this number tracing activity students create a rainbow number line. This can be a colorful tool with a personal connection to the student that may be used as a reference. It can serve as a visual and motor reminder when reading and writing numbers because the student went through the tracing motion.
This task presents students with some creative geometric ways to represent the …
This task presents students with some creative geometric ways to represent the fraction one half. The goal is both to appeal to students' visual intuition while also providing a hands on activity to decide whether or not two areas are equal.
The purpose of this task is for students to compare two fractions …
The purpose of this task is for students to compare two fractions that arise in a context. Because the fractions are equal, students need to be able to explain how they know that.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.