This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Approximately one-fifth of people in the United States will experience clinical depression during their lifetime. This common disease has been linked to alterations in the gut microbiome. However, the mechanisms aren’t clear. In a recent study, researchers investigated whether the immune system plays a role in the microbiome–depression link. They found that patients with depression had elevated levels of certain types of bacteria that induce maturation of Th17 immune cells and the abundance of one of these species, Clostridium symbiosum, was also elevated in mice with depressive-like behaviors. Transplanting feces from humans with depression into mice lacking a microbiome reduced sociability in the mice and made them more susceptible to learned helplessness, an animal model of depression. The depressive effect depended on Th17 cells, as mice without these immune cells weren’t susceptible..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Autophagy is a catabolic process in which intracellular components are degraded in lysosomes. Stresses such as nutrient deficiency, hypoxia, and chemotherapy can trigger autophagy, making autophagy relevant to cancer treatment. Autophagy appears to play complex dual roles in cancer immune escape. For example, autophagic degradation of the immune checkpoint protein PD-L1 generally enhances T cell activation and suppresses tumor growth, but cancer cells can encapsulate PD-L1 and another checkpoint protein, CD47, in endosomes to prevent their degradation. In addition, MHC-I/II autophagy enables cancer cell immune escape and inhibits antigen presentation and T cell activation. However, autophagic mitochondrial degradation, termed mitophagy, can improve the antitumor immune response. Therefore, autophagy can positively or negatively affect cancer immune escape, which may depend on the experimental context, and autophagy may synergize with immune cells to regulate cancer immune surveillance..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.