(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
En este módulo, los estudiantes aprenden sobre traducciones, reflexiones y rotaciones en el avión y, lo que es más importante, cómo usarlas para definir con precisión el concepto de congruencia. A lo largo del tema A, sobre las definiciones y propiedades de los movimientos rígidos básicos, los estudiantes verifican experimentalmente sus propiedades básicas y, cuando son factibles, profundicen su comprensión de estas propiedades utilizando el razonamiento. Todas las lecciones del tema B demuestran a los estudiantes la capacidad de secuenciar varias combinaciones de movimientos rígidos mientras mantienen las propiedades básicas de los movimientos rígidos individuales. Los estudiantes aprenden que la congruencia es solo una secuencia de movimientos rígidos básicos en el Tema C, y el Tema D comienza el aprendizaje del Teorema Pitagórico.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: In this module, students learn about translations, reflections, and rotations in the plane and, more importantly, how to use them to precisely define the concept of congruence. Throughout Topic A, on the definitions and properties of the basic rigid motions, students verify experimentally their basic properties and, when feasible, deepen their understanding of these properties using reasoning. All the lessons of Topic B demonstrate to students the ability to sequence various combinations of rigid motions while maintaining the basic properties of individual rigid motions. Students learn that congruence is just a sequence of basic rigid motions in Topic C, and Topic D begins the learning of Pythagorean Theorem.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
En el módulo 3, los estudiantes aprenden sobre la dilatación y la similitud y aplican ese conocimiento a una prueba del teorema de Pitagorean basado en el criterio de ángulo de ángulo para triángulos similares. El módulo comienza con la definición de dilatación, propiedades de las dilataciones y composiciones de dilaciones. Un objetivo general de este módulo es reemplazar la idea común de la misma forma, diferentes tamaños con una definición de similitud que se puede aplicar a formas geométricas que no son polígonos, como elipses y círculos.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: In Module 3, students learn about dilation and similarity and apply that knowledge to a proof of the Pythagorean Theorem based on the Angle-Angle criterion for similar triangles. The module begins with the definition of dilation, properties of dilations, and compositions of dilations. One overarching goal of this module is to replace the common idea of same shape, different sizes with a definition of similarity that can be applied to geometric shapes that are not polygons, such as ellipses and circles.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
El módulo 7 comienza con el trabajo relacionado con el teorema de Pitágoras y los triángulos rectos. Antes de que se presenten las lecciones de este módulo a los estudiantes, es importante que las lecciones en los módulos 2 y 3 sean relacionadas con el teorema de Pitágoras se imparten (M2: Lecciones 15 y 16, M3: Lecciones 13 y 14). En los módulos 2 y 3, los estudiantes usaron el teorema de Pitágoras para determinar la longitud desconocida de un triángulo derecho. En los casos en que la longitud lateral era un entero, los estudiantes calcularon la longitud. Cuando la longitud lateral no era un entero, los estudiantes dejaron la respuesta en forma de x2 = c, donde C no era un número cuadrado perfecto. Esas soluciones se revisan y son la motivación para aprender sobre las raíces cuadradas y los números irracionales en general.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: Module 7 begins with work related to the Pythagorean Theorem and right triangles. Before the lessons of this module are presented to students, it is important that the lessons in Modules 2 and 3 related to the Pythagorean Theorem are taught (M2: Lessons 15 and 16, M3: Lessons 13 and 14). In Modules 2 and 3, students used the Pythagorean Theorem to determine the unknown length of a right triangle. In cases where the side length was an integer, students computed the length. When the side length was not an integer, students left the answer in the form of x2=c, where c was not a perfect square number. Those solutions are revisited and are the motivation for learning about square roots and irrational numbers in general.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
This lesson unit is intended to help teachers assess how well students …
This lesson unit is intended to help teachers assess how well students are able to produce and evaluate geometrical proofs. In particular, this unit is intended to help you identify and assist students who have difficulties in: interpreting diagrams; identifying mathematical knowledge relevant to an argument; linking visual and algebraic representations; and producing and evaluating mathematical arguments.
This video lesson presents a real world problem that can be solved …
This video lesson presents a real world problem that can be solved by using the Pythagorean theorem. The problem faces a juice seller daily. He has equilateral barrels with equal heights and he always tries to empty the juice of two barrels into a third barrel that has a volume equal to the sum of the volumes of the two barrels. This juice seller wants to find a simple way to help him select the right barrel without wasting time, and without any calculations - since he is ignorant of Mathematics. The prerequisite for this lesson includes knowledge of the following: the Pythagorean theorem; calculation of a triangles area knowing the angle between its two sides; cosine rule; calculation of a circle's area; and calculation of the areas and volumes of solids with regular bases.
This Flexbook is community contributed through ck12.org. It covers three lessons on …
This Flexbook is community contributed through ck12.org. It covers three lessons on the Pythagorean Theorem. 1) Introduction and Determining if the Triangle is a Right Triangle, 2) Finding the Hypotenuse, and 3) Finding a leg. It includes step by step instructions, application problems, and answers (at the end of each lesson). Ck12.org material is downloadable, editable, and accessible offline and online.
This is a cross curricular art project for 8th grade math students. …
This is a cross curricular art project for 8th grade math students. Students are first introduced to what the Wheel of Theodorus is, ponder where they see it in the world around them and then instructed on how to create their own. When they have finished constructing their Wheel of Theodorus they are asked to creatively and colorfully turn it "into" something. Examples are given. After they Wheel of Theodorus is complete, students are then asked to measure all the sides lengths of the triangles in the wheel. They should quickly see that they can use the Pythagorean Theorem to do this and that it follows a predictable pattern. No ruler will be required for this part of the project!
This is a cross curricular art project for 8th grade math students. …
This is a cross curricular art project for 8th grade math students. Students are first introduced to what the Wheel of Theodorus is, ponder where they see it in the world around them and then instructed on how to create their own. When they have finished constructing their Wheel of Theodorus they are asked to creatively and colorfully turn it "into" something. Examples are given. After they Wheel of Theodorus is complete, students are then asked to measure all the sides lengths of the triangles in the wheel. They should quickly see that they can use the Pythagorean Theorem to do this and that it follows a predictable pattern. No ruler will be required for this part of the project!
Students will use the Pythagorean Theorem to find missing lengths of a …
Students will use the Pythagorean Theorem to find missing lengths of a triangle, and be able to explain why the Pythagorean Theorem is helpful in real world situations.
This seminar will teach you about the Pythagorean Theorem. It will also …
This seminar will teach you about the Pythagorean Theorem. It will also teach you how to use the converse of the theorem and how to identify Pythagorean triples. You will have to apply the techniques you have learned to simplify radicals, and you will learn how to apply exponential properties. You will be shown visual demonstrations of the Pythagorean Theorem and be asked to connect them to the algebraic models of the Theorem.StandardsCC.2.3.8.A.3.Understand and apply the Pythagorean Theorem to solve problems.
This lesson teaches students about the history of the Pythagorean theorem, along …
This lesson teaches students about the history of the Pythagorean theorem, along with proofs and applications. It is geared toward high school Geometry students that have completed a year of Algebra.
This lesson unit is intended to help teachers assess how well students …
This lesson unit is intended to help teachers assess how well students are able to: use the area of right triangles to deduce the areas of other shapes; use dissection methods for finding areas; organize an investigation systematically and collect data; deduce a generalizable method for finding lengths and areas (The Pythagorean Theorem.)
This is a short PowerPoint presentation template that I have created for …
This is a short PowerPoint presentation template that I have created for my students to revise and make functional. After spending a day working with the Pythagorean Theorem, I want my students to work in groups to revise this presentation so that it could be used to introduce the Pythagorean Theorem in a classroom setting.
This 12-problem worksheet is an assessment tool I created to see how …
This 12-problem worksheet is an assessment tool I created to see how well my adult education students grasped my lesson on the Pythagorean Theorem. There are plug-and-chug questions that require the students to solve for the lengths of missing sides and more complicated problems.
Reviewing the Pythagorean Theorem. Did you know the Scarecrow states the Pythagorean …
Reviewing the Pythagorean Theorem. Did you know the Scarecrow states the Pythagorean Theorem incorrectly in The Wizard of Oz? At the end is a clip of Homer Simpson also stating the Pythagorean Theorem incorrectly
The purpose of this task is to lead students through an algebraic …
The purpose of this task is to lead students through an algebraic approach to a well-known result from classical geometry, namely, that a point X is on the circle of diameter AB whenever _AXB is a right angle.
Students learn that math is important in navigation and engineering. They learn …
Students learn that math is important in navigation and engineering. They learn about triangles and how they can help determine distances. Ancient land and sea navigators started with the most basic of navigation equations (speed x time = distance). Today, navigational satellites use equations that take into account the relative effects of space and time. However, even these high-tech wonders cannot be built without pure and simple math concepts â basic geometry and trigonometry â that have been used for thousands of years.
This task presents a foundational result in geometry, presented with deliberately sparse …
This task presents a foundational result in geometry, presented with deliberately sparse guidance in order to allow a wide variety of approaches. Teachers should of course feel free to provide additional scaffolding to encourage solutions or thinking in one particular direction. We include three solutions which fall into two general approaches, one based on reference to previously-derived results (e.g., the Pythagorean Theorem), and another conducted in terms of the geometry of rigid transformations.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.