This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Proteins in the tumor necrosis factor (TNF) family are known to regulate the immune system in cancers, and trials targeting these proteins are currently being conducted. However, the TNF family profile in glioma, the most common cancer originating in the adult central nervous system, is unclear. A recent study analyzed the TNF family profile and clinical characteristics of 1749 glioma cases using data from four public datasets. The expression levels of most TNF family members were positively correlated in the gliomas and were linked to patients’ overall survival. A TNF family signature was identified based on the expression levels in 702 of the cases and validated in the other cases, and a prognostic model was developed to predict 1-, 3-, and 5-year survival for individual patients with glioma. The TNF family-based signature was related to clinical, molecular and genetic characteristics of the patients..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Solid organ transplant recipients need immunosuppressive therapy for the rest of their lives and have more distinct virus populations in their microbiome than people without suppressed immune systems. But we do not yet know if, or how much, the donor’s virome impacts the recipient’s virome, particularly in parts of the body other than the transplanted organ. To narrow this gap, a recent study applied a data modeling approach to the viral communities in the airway and plasma of lung transplant recipients. Differences between plasma and airway viromes increased during the first year after implantation, but the viromes from the same body site and in different patients became more similar over time. Time after transplantation was significantly associated with virome composition variance for airway samples but not plasma samples..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.