Updating search results...

Search Resources

1989 Results

View
Selected filters:
  • Chemistry
Brain-Based Lesson: Polymers
Unrestricted Use
Public Domain
Rating
0.0 stars

The concept of polymers is taught after students have learned about atoms and molecules. We first build up the background knowledge of the Periodic Table of Elements and the structure of an atom, then begin to combine atoms to create molecules. We create models of atoms and molecules, allowing students to visualize what is normally unable to be seen (a Science and Engineering Practice). Students learn that the way we combine atoms (structure) and the atoms we use (composition) impact the properties that a substance will have. After some time, we begin to introduce that we can combine molecules together in similar ways that we combine atoms. These repeating patterns of molecules are called polymers. Which is where this lesson falls. This is their instruction into what a polymer is, its naming conventions, and how depending on the molecule used, we can create synthetic materials that have specific properties that suit our needs.

Subject:
Chemistry
Material Type:
Activity/Lab
Author:
Caleb Wilson
Date Added:
03/22/2021
Breathing Blue
Read the Fine Print
Educational Use
Rating
0.0 stars

In this demonstration of chemical change, the presenter blows breath into a methylene blue solution releasing carbon dioxide which acidifies the water and changes it from a bright blue color to green.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Lesson
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Author:
Ohio Digital Classroom
WOSU
Date Added:
08/16/2009
Breathing Cells
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a simple pH indicator to measure how much CO2 is produced during respiration, at rest and after exercising. They begin by comparing some common household solutions in order to determine the color change of the indicator. They review the concepts of pH and respiration and extend their knowledge to measuring the effectiveness of bioremediation in the environment.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Kaelin Cawley
Malinda Schaefer Zarske
Date Added:
10/14/2015
The Bridge Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

In this interactive activity from the Building Big Web site, use your knowledge of bridge design to match the right bridge to the right location in a fictitious city.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Interactive
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
01/22/2004
Bridges
Read the Fine Print
Rating
0.0 stars

Bridges come in a wide variety of sizes, shapes, and lengths and are found all over the world. It is important that bridges are strong so they are safe to cross. Design and build a your own model bridge. Test your bridge for strength using a force sensor that measures how hard you pull on your bridge. By observing a graph of the force, determine the amount of force needed to make your bridge collapse.

Subject:
Applied Science
Chemistry
Engineering
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/21/2012
Bridging to Polymers: Thermoset Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as engineers to learn about the strengths of various epoxy-amine mixtures and observe the unique characteristics of different mixtures of epoxies and hardeners. Student groups make and optimize thermosets by combining two chemicals in exacting ratios to fabricate the strongest and/or most flexible thermoset possible.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Rohde
Don McGowan
Date Added:
09/18/2014
A Brief Introduction to the Applications of Small Organic Molecules as Food Additives
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A new chapter in Introductory Organic Chemistry course. Lecture PowerPoint file and laboratory document are also included in this work. The goal of this chapter is to cover the basic ground of the food additives from the perspective of organic chemistry.

Lecture PowerPoint slides have all in-class questions/discussions and after-class assignments listed.

Laboratory document – Synthesis of Yellow 5 (Sunset yellow), an azo dye used in food industry. Document includes a short introduction, detailed experimental procedure and post-laboratory questions.

Subject:
Chemistry
Physical Science
Material Type:
Module
Provider:
CUNY Academic Works
Provider Set:
Queensborough Community College
Author:
Zhou Zhou Ph.D.
Date Added:
08/17/2020
Bubbling Blobs
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a lab project where students observe what happens when you try to mix oil and water. It can also be used to work with density.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Brenda Hanssen
Date Added:
10/04/2011
Buffer Capacity in Chemical Equilibrium: How long can you hyperventilate before severe alkalosis sets in?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this Spreadsheets Across the Curriculum module, students build spreadsheets and draw graphs to explore a chemical buffer's ability to resist pH change, i.e., the buffer capacity. Quantification of buffer capacity is conceptually straightforward but involves multiple repetitive calculations. The key relationship is the Henderson-Hasselbalch equation: , which follows from the Law of Mass Action and The spreadsheets automate many of the calculations, thereby simplifying the process. Instead of focusing on the calculations, students can see what buffer capacity means and focus on the a deeper understanding of its implications. After reviewing several buffer calculations, the stduents use the spreadsheet to investigate buffer capacity graphically and characterize blood's physiological buffer system. While solving the question of how many breaths one can take before alkalosis sets in, the students manipulate a logarithmic equation, do "what if" modeling, and analyze rates of change from plots of their cacluated results.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Armando Herbelin
Date Added:
11/06/2014
Buffers, the Acid Rain Slayer: Crash Course Chemistry #31
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

In this episode, Hank talks about how nutty our world is via Buffers! He defines buffers and their compositions and talks about carbonate buffering systems in nature, acid rain, pH of buffers, and titration. Plus, a really cool experiment using indicators to showcase just how awesome buffers are.

Chapters:
Nature is Nutty
Carbonate Buffering and Acid Rain
Definition of Buffers
Composition of Buffers
pH of Buffers
Titration
Carbonate Buffering in Nature

Subject:
Chemistry
Physical Science
Material Type:
Lecture
Provider:
Complexly
Provider Set:
Crash Course Chemistry
Date Added:
09/18/2013
Buffers, titrations, and solubility equilibria
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

We can combine our knowledge of acids and bases, equilibrium, and neutralization reactions to understand buffers and titrations. Solubility equilibria will build on concepts from solubility, precipitation, and equilibrium.

Subject:
Chemistry
Physical Science
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Date Added:
06/26/2019
Build a Molecule
Unrestricted Use
CC BY
Rating
0.0 stars

Starting from atoms, see how many molecules you can build. Collect your molecules and see them in 3D!

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Christine Denison
Emily Moore
John Blanco
Jonathan Olson
Kathy Perkins
Kelly Lancaster
Sam Reid
Date Added:
06/27/2011
Build an Atom
Unrestricted Use
CC BY
Rating
0.0 stars

Build an atom out of protons, neutrons, and electrons, and see how the element, charge, and mass change. Then play a game to test your ideas!

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Jack Barbera
John Blanco
Kathy Perkins
Kelly Lancaster
Patricia Loeblein
Robert Parson
Sam Reid
Suzanne Brahmia
Date Added:
07/13/2011
Build and Test a Conductivity Probe with Arduino
Read the Fine Print
Educational Use
Rating
0.0 stars

Student groups construct simple conductivity probes and then integrate them into two different circuits to test the probe behavior in solutions of varying conductivity (salt water, sugar water, distilled water, tap water). The activity culminates with student-designed experiments that utilize the constructed probes. The focus is to introduce students to the fabrication of the probe and expose them to two different ways to integrate the probe to obtain qualitative and quantitative measurements, while considering the application and utility of a conductivity probe within an engineering context. A provided handout guides teams through the process: background reading and questions; probe fabrication including soldering; probe testing and data gathering (including circuit creation on breadboard); probe connection to Arduino (including circuit creation and code entry) and a second round of testing and data gathering; design and conduct their own lab experiments that use the probes; online electrolyte/nonelectrolyte reading, short video, comprehension check and analysis questions.

Subject:
Career and Technical Education
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Iulian Irimina
Phillip Cook
Date Added:
02/17/2017
The Building Blocks of Matter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about atoms and their structure (protons, electrons, neutrons) — the building blocks of matter. They see how scientific discoveries about atoms and molecules influence new technologies developed by engineers.

Subject:
Chemistry
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Daria Kotys-Schwartz
Janet Yowell
Malinda Schaefer Zarske
Date Added:
02/17/2017
Building Simple Machines: A Glass of Milk, Please
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from ZOOM, the cast shows how the 34 steps in their Rube Goldberg invention use everything from gravity to carbon dioxide gas in order to accomplish one simple task: pouring a glass of milk.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
02/20/2004
Building Simple Machines: Plant Quencher
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment from ZOOM, Jillian explains how her simple machine uses marbles, levers, flowing sand, and a spinning wheel to water a plant.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
02/20/2004
Building a Bungee Jump
Read the Fine Print
Rating
0.0 stars

A bungee jump involves jumping from a tall structure while connected to a large elastic cord. Design a bungee jump that is "safe" for a hard-boiled egg. Create a safety egg harness and connect it to a rubber band, which is your the "bungee cord." Finally, attach your bungee cord to a force sensor to measures the forces that push or pull your egg.

Subject:
Applied Science
Chemistry
Education
Engineering
Geoscience
Life Science
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/21/2012