Updating search results...

Search Resources

4238 Results

View
Selected filters:
  • Engineering
Find the Question Activity for A Whale of an Ocean Feature Story: Grades 4-5
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This activity is designed to be used with the Feature Story, A Whale of an Ocean, and students in grades 4-5. After reading the text, students work in pairs to match questions and answers posted around the classroom. The PDF document includes questions and answers, directions, and an answer key.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Penguins and Polar Bears: An Online Magazine for K-5 Teachers
Author:
Clarissa Reeson
Tracey Allen
Date Added:
05/17/2009
Finite Element Analysis of Solids and Fluids I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces finite element methods for the analysis of solid, structural, fluid, field, and heat transfer problems. Steady-state, transient, and dynamic conditions are considered. Finite element methods and solution procedures for linear and nonlinear analyses are presented using largely physical arguments. The homework and a term project (for graduate students) involve use of the general purpose finite element analysis program ADINA. Applications include finite element analyses, modeling of problems, and interpretation of numerical results.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Bathe, Klaus-Jürgen
Date Added:
09/01/2009
Finite Element Analysis of Solids and Fluids II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course presents finite element theory and methods for general linear and nonlinear analyses. Reliable and effective finite element procedures are discussed with their applications to the solution of general problems in solid, structural, and fluid mechanics, heat and mass transfer, and fluid-structure interactions. The governing continuum mechanics equations, conservation laws, virtual work, and variational principles are used to establish effective finite element discretizations and the stability, accuracy, and convergence are discussed. The homework and the student-selected term project using the general-purpose finite element analysis program ADINA are important parts of the course.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Bathe, Klaus-Jürgen
Date Added:
02/01/2011
Finite Element Procedures for Solids and Structures
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Finite element analysis is now widely used for solving complex static and dynamic problems encountered in engineering and the sciences. In these two video courses, Professor K. J. Bathe, a researcher of world renown in the field of finite element analysis, teaches the basic principles used for effective finite element analysis, describes the general assumptions, and discusses the implementation of finite element procedures for linear and nonlinear analyses.
These videos were produced in 1982 and 1986 by the MIT Center for Advanced Engineering Study.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Bathe, Klaus-Jürgen
Date Added:
02/01/2010
Fire Brigade
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students demonstrate their knowledge of Newton’s 1st Law of Motion as they engineer a new method for putting
out fires. As they iterate through this design challenge, they gain firsthand experience in the design process.. (Note: No real fire is used in this challenge.)

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
The Tech Museum of Innovation
Provider Set:
The Tech Museum of Innovation Design Challenges
Date Added:
04/25/2013
Fire Safety in High Rises
Read the Fine Print
Educational Use
Rating
0.0 stars

This video segment adapted from NOVA explains how the sprinkler revolutionized fire safety and also features developments in fire-safety design for high-rise buildings.

Subject:
Applied Science
Engineering
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
Argosy Foundation
WGBH Educational Foundation
Date Added:
05/09/2006
A First Course in Electrical and Computer Engineering
Unrestricted Use
CC BY
Rating
0.0 stars

This book was written for an experimental freshman course at the University of Colorado. The course is now an elective that the majority of our electrical and computer engineering students take in the second semester of their freshman year, just before their first circuits course. Our department decided to offer this course for several reasons:

we wanted to pique student' interest in engineering by acquainting them with engineering teachers early in their university careers and by providing with exposure to the types of problems that electrical and computer engineers are asked to solve;
we wanted students entering the electrical and computer engineering programs to be prepared in complex analysis, phasors, and linear algebra, topics that are of fundamental importance in our discipline;
we wanted students to have an introduction to a software application tool, such as MATLAB, to complete their preparation for practical and efficient computing in their subsequent courses and in their professional careers;
we wanted students to make early contact with advanced topics like vector graphics, filtering, and binary coding so that they would gain a more rounded picture of modern electrical and computer engineering.
In order to introduce this course, we had to sacrifice a second semester of Pascal programming. We concluded that the sacrifice was worth making because we found that most of our students were prepared for high-level language computing after just one semester of programming.

We believe engineering educators elsewhere are reaching similar conclusions about their own students and curriculums. We hope this book helps create a much needed dialogue about curriculum revision and that it leads to the development of similar introductory courses that encourage students to enter and practice our craft.Students electing to take this course have completed one semester of calculus, computer programming, chemistry, and humanities.

Concurrently with this course, students take physics and a second semester of calculus, as well as a second semester in the humanities. By omitting the advanced topics marked by asterisks, we are able to cover Complex Numbers through Linear Algebra, plus two of the three remaining chapters. The book is organized so that the instructor can select any two of the three. If every chapter of this book is covered, including the advanced topics, then enough material exists for a two-semester course.

The first three chapters of this book provide a fairly complete coverage of complex numbers, the functions e^x and e^jand phasors. Our department philosophy is that these topics must be understood if a student is to succeed in electrical and computer engineering. These three chapters may also be used as a supplement to a circuits course. A measured pace of presentation, taking between sixteen and eighteen lectures, is sufficient to cover all but the advanced sections in Complex Numbers through Phasors.

The chapter on "linear algebra" is prerequisite for all subsequent chapters. We use eight to ten lectures to cover it. We devote twelve to sixteen lectures to cover topics from Vector Graphics through Binary Codes. (We assume a semester consisting of 42 lectures and three exams.) The chapter on vector graphics applies the linear algebra learned in the previous chapter to the problem of translating, scaling, and rotating images. "Filtering" introduces the student to basic ideas in averaging and filtering. The chapter on "Binary Codes" covers the rudiments of binary coding, including Huffman codes and Hamming codes.

If the users of this book find "Vector Graphics" through "Binary Codes" too confining, we encourage them to supplement the essential material in "Complex Numbers" through "Linear Algebra" with their own course notes on additional topics. Within electrical and computer engineering there are endless possibilities. Practically any set of topics that can be taught with conviction and enthusiasm will whet the student's appetite. We encourage you to write to us or to our editor, Tom Robbins, about your ideas for additional topics. We would like to think that our book and its subsequent editions will have an open architecture that enables us to accommodate a wide range of student and faculty interests.

Throughout this book we have used MATLAB programs to illustrate key ideas. MATLAB is an interactive, matrix-oriented language that is ideally suited to circuit analysis, linear systems, control theory, communications, linear algebra, and numerical analysis. MATLAB is rapidly becoming a standard software tool in universities and engineering companies. (For more information about MATLAB, return the attached card in the back of this book to The MathWorks, Inc.) MATLAB programs are designed to develop the student's ability to solve meaningful problems, compute, and plot in a high-level applications language. Our students get started in MATLAB by working through “An Introduction to MATLAB,” while seated at an IBM PC (or look-alike) or an Apple Macintosh. We also have them run through the demonstration programs in "Complex Numbers". Each week we give three classroom lectures and conduct a one-hour computer lab session. Students use this lab session to hone MATLAB skills, to write programs, or to conduct the numerical experiments that are given at the end of each chapter. We require that these experiments be carried out and then reported in a short lab report that contains (i) introduction, (ii) analytical computations, (iii) computer code, (iv) experimental results, and (v) conclusions. The quality of the numerical results and the computer graphics astonishes students. Solutions to the chapter problems are available from the publisher for instructors who adopt this text for classroom use.

We wish to acknowledge our late colleague Richard Roberts, who encouraged us to publish this book, and Michael Lightner and Ruth Ravenel, who taught "Linear Algebra" and "Vector Graphics" and offered helpful suggestions on the manuscript. We thank C. T. Mullis for allowing us to use his notes on binary codes to guide our writing of "Binary Codes". We thank Cédric Demeure and Peter Massey for their contributions to the writing of "An Introduction to MATLAB" and "The Edix Editor". We thank Tom Robbins, our editor at Addison-Wesley, for his encouragement, patience, and many suggestions. We are especially grateful to Julie Fredlund, who composed this text through many drafts and improved it in many ways. We thank her for preparing an excellent manuscript for production.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax CNX
Author:
Louis Scharf
Date Added:
11/26/2019
First Grade: Design Dilemma
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of Design Dilemma is to encourage students to use resourceful and creative behaviors to think like a scientist. Students will demonstrate these behaviors to design and build a suitable structure for a fourth little pig. Although the use of the book The Fourth Little Pig is helpful, the module may be taught without it. This module is meant for all students. The classroom teacher should work with a specialist or special educator to find or develop alternate activities or resources for visually impaired students, where appropriate.

Subject:
Architecture and Design
Engineering
Material Type:
Lesson Plan
Author:
Amy Tubman
MSDE Admin
Melinda Wilson
Kathleen Hogan
Gwen Lewis
Marcella Brown
Kathleen Gregory
Bruce Riegel
Jessica J. Reinhard
Heidi Strite
Margaret Lee
Date Added:
07/25/2018
The First & Zeroth Laws of Thermodynamics: Crash Course Engineering #9
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

In today’s episode we’ll explore thermodynamics and some of the ways it shows up in our daily lives. We’ll learn the zeroth law of thermodynamics, what it means to reach a thermal equilibrium, and define the first law of thermodynamics. We’ll also explore how stationary, adiabatic, and isochoric processes can make our lives as engineers a little easier.

Note: Different branches of engineering sometimes define the first law of thermodynamics differently, depending on how work is defined. Essentially, work released from a system might be defined as a positive value or a negative value, and thus the first law can be defined as either Q-W or Q+W. Both are acceptable forms, depending on how the system is defined! We chose to focus on only one definition here to limit the confusion.

Subject:
Applied Science
Engineering
Material Type:
Lecture
Provider:
Complexly
Provider Set:
Crash Course Engineering
Date Added:
07/12/2018
Fish-Friendly Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

Students further their understanding of the salmon life cycle and the human structures and actions that aid in the migration of fish around hydroelectric dams by playing an animated PowerPoint game involving a fish that must climb a fish ladder to get over a dam. They first brainstorm their own ideas, and then learn about existing ways engineers have made dams "friendlier" to migrating fish, before being quizzed as part of the game.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jeff Lyng
Kristin Field
Megan Podlogar
Date Added:
09/18/2014
Fish Hooks, Not Bird Hooks: A STEM Design Challenge
Unrestricted Use
Public Domain
Rating
0.0 stars

Approximately 600,000 sea birds die each year by getting caught on hooks used in line fishing. A device called the Hookpod, invented by a UK company in Devon, has a clever solution to this problem. The fish hook is covered by a case so birds cannot get hooked. At a certain depth (below the diving depth of indigenous birds) a mechanism is triggered to release the case which floats to the surface and is retrieved to be used again. These lesson ideas provide an interesting practical idea to use a particle model to explain density and pressure in a gas. Students will then take part in a STEM design challenge to make a device to respond to a pressure change at a particular depth of water.

Subject:
Applied Science
Engineering
Environmental Science
Physical Science
Physics
Material Type:
Activity/Lab
Date Added:
04/07/2020
Flame Test: Red, Green, Blue, Violet?
Read the Fine Print
Educational Use
Rating
0.0 stars

To become familiar with the transfer of energy in the form of quantum, students perform flame tests, which is one way chemical engineers identify elements by observing the color emitted when placed in a flame. After calculating and then preparing specific molarity solutions of strontium chloride, copper II chloride and potassium chloride (good practice!), students observe the distinct colors each solution produces when placed in a flame, determine the visible light wavelength, and apply that data to identify the metal in a mystery solution. They also calculate the frequency of energy for the solutions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Flights of Fancy Story Time Playlist
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

National Air and Space Museum offers stories for young children and their families inspired by our collection of air and space objects and historic photos.

Subject:
Applied Science
Engineering
History
Physical Science
Material Type:
Activity/Lab
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/14/2022
Flights of Fancy Story Time: "Shhh! Satellites"
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Earth is trying to sleep but the Satellites keep bothering Earth with noisy signals. They are talking in all different languages and sending all kinds of information.

Subject:
Applied Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/14/2022
Flights of Fancy Story Time: "Which Way Is the Wind Blowing"
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The three friends help a neighbor whose hat blows away and find out about weathervanes and wind direction. They make windsocks and spinning garden decorations.

Subject:
Applied Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/14/2022
Flirting With Disaster - The Importance of Safety: Crash Course Engineering #28
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

As engineer, sometimes lives will be in your hands, so this week we’re exploring safety and its impact on engineering. We’ll discuss the difference between occupational safety and public safety and how to analyze and review a process for any potential dangers with things like HAZOP. We’ll learn the dangers of having too *many* alarms and look at how important it is to adopt a good mindset of safety culture.

Subject:
Applied Science
Engineering
Material Type:
Lecture
Provider:
Complexly
Provider Set:
Crash Course Engineering
Date Added:
12/13/2018
Floaters and Sinkers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the important concept of density with a focus is on the more easily understood densities of solids. Students use different methods to determine the densities of solid objects, including water displacement to determine volumes of irregularly-shaped objects. By comparing densities of various solids to the density of water, and by considering the behavior of different solids when placed in water, students conclude that ordinarily, objects with densities greater than water sink, while those with densities less than water float. Then they explore the principle of buoyancy, and through further experimentation arrive at Archimedes' principle that a floating object displaces a mass of water equal to its own mass. Students may be surprised to discover that a floating object displaces more water than a sinking object of the same volume.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Floaters and Sinkers: Lesson
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to the important concept of density. The focus is on the more easily understood densities of solids, but students can also explore the densities of liquids and gases. Students devise methods to determine the densities of solid objects, including the method of water displacement to determine volumes of irregularly-shaped objects. By comparing densities of various solids to the density of water, and by considering the behavior of different solids when placed in water, students conclude that ordinarily, objects with densities greater than water will sink, while those with densities less than water will float. Density is an important material property for engineers to understand.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014