This resource contains demonstrations used to illustrate the theory and applications of …
This resource contains demonstrations used to illustrate the theory and applications of lasers and optics. A detailed listing of the topics can be found below. Lasers today are being used in an ever-increasing number of applications. In fact, there is hardly a field that has not been touched by the laser. Lasers are playing key roles in the home, office, hospital, factory, outdoors, and theater, as well as in the laboratory. To learn about lasers and related optics, one usually takes a course or two, or acquires the necessary information from books and journal articles. To make this learning more vivid and more exciting, and, one hopes, more understandable, one needs to see some of the basic phenomena involved. To fill this need, Professor Ezekiel has videotaped 48 demonstrations that illustrate most of the fundamental phenomena relating to lasers and physical optics. By using split-screen inserts and a wide range of video-recording capabilities, it is possible to show real-time effects in lasers and optics with the simultaneous manipulation of the components that cause these effects. In this way, one can see effects in close up that would be difficult, if not impossible, to display in front of an audience or in the classroom. These video demonstrations are designed for:
The individual student of lasers and optics who wants to observe the various phenomena covered in theoretical treatments in courses, books, and technical papers. The Instructor in lasers and optics in a company, university, college, or high school who wants to illustrate, in class, many of the fundamental phenomena in optics and lasers.
These videos were produced by the MIT Center for Advanced Engineering Study.
After discussing weathering and erosion in class, students are asked to do …
After discussing weathering and erosion in class, students are asked to do a small amount of research on different types of chemical weathering, physical weathering, and erosion processes (mostly out of their textbook). Outside of class students then dirty at least four similar dishes with the same type, thickness and aerial extent of food, preferably baked on to ensure maximum stick. One dish is set aside as a control (no weathering or erosion will occur for that dish). For each of the remaining three dishes, students devise an experiment that mimics some sort of chemical weathering, physical weathering, or erosion process (freeze/thaw, sand abrasion, oxidation, etc.). Prior to the experiments, the thickness of food is measured. Experiments are timed, and at the end of the experiment each plate is turned over to determine how much which method removed the greatest aerial extent of food. Experimental results are compared to the control plate to determine the actual effectiveness. Erosion/weathering rates are determined by dividing the thickness of food removed by the experimental time. Students then calculate how long it would take to remove a pile of food the size of the Geology building (assume a 50 m radius sphere), and to remove an amount of food equivalent to the depth of the Grand Canyon. Students then compare these results to rock erosion and weathering rates, performing similar calculations using these "real" rates (see the full project description for details). Photos of each step and the scientists are encouraged in their 2-3 page writeup.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students will test the percolation rates of 6 different soil samples. Three …
Students will test the percolation rates of 6 different soil samples. Three of the samples are measured sand and clay and three are collected from the schoolyard and wetland.
After predicting which of two earnings streams has the highest currrent value, …
After predicting which of two earnings streams has the highest currrent value, students use a discounted values table to compare the two earnings streams, discovering that earlier earnings has higher value and that the choice of earnings streams depends on the interest rate chosen.
This game has students simulate the propagation of P and S waves …
This game has students simulate the propagation of P and S waves after an earthquake and to use the lag between these to determine where in the simulation the earthquake occurred.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This is an out of class exercise that allows students to explore …
This is an out of class exercise that allows students to explore biological molecules that contain heme like molecules with metals bound in them. The properties of these molecules give them different colors and functions, but all are related evolutionarily.
After predicting what the unemployment rate will be for students in the …
After predicting what the unemployment rate will be for students in the class, a confidential survey modeled on the Current Population Survey questions is used to gather data about each student's employment. Students use this data to measure the class unemployment rate and then assess its accuracy.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.