Updating search results...

Search Resources

4297 Results

View
Selected filters:
  • Engineering
Advanced Topics in Cryptography
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The topics covered in this course include interactive proofs, zero-knowledge proofs, zero-knowledge proofs of knowledge, non-interactive zero-knowledge proofs, secure protocols, two-party secure computation, multiparty secure computation, and chosen-ciphertext security.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Micali, Silvio
Date Added:
02/01/2003
Advances in Engineering Education: A Journal of Engineering Education
Read the Fine Print
Educational Use
Rating
0.0 stars

Disseminates documented innovations in engineering education practice through the creative use of multimedia. includes descriptions of innovative curricula, courses, and teaching practices both within and outside the classroom that are clearly built upon a foundation of accepted learning science principles. Completed and documented studies are published as full articles; work in progress that shows distinct promise of eventual success may be published as educational briefs.

Subject:
Applied Science
Education
Engineering
Material Type:
Reading
Provider:
American Society for Engineering Education (ASEE)
Date Added:
03/07/2016
Advances in Neurotechnology
Read the Fine Print
Educational Use
Rating
0.0 stars

Our brains control every movement we make. Most of us take for granted our ability to pick up a cup or change the television station. However, for people who have lost a limb or become paralyzed, the inability to do these things means a loss of freedom and independence. This video segment from Greater Boston describes how neuroscientists and bioengineers have teamed up to create a system that allows people who have lost motor functions to control electronic devices through their thoughts alone. Grades 6-12

Subject:
Applied Science
Engineering
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
Argosy Foundation
WGBH Educational Foundation
Date Added:
05/09/2006
The Advantage of Machines
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students learn about work as defined by physical science and see that work is made easier through the use of simple machines. Already encountering simple machines everyday, students will be alerted to their widespread uses in everyday life. This lesson serves as the starting point for the Simple Machines Unit.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Glen Sirakavit
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Michael Bendewald
Date Added:
09/18/2014
Adventures in Advanced Symbolic Programming
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers concepts and techniques for the design and implementation of large software systems that can be adapted to uses not anticipated by the designer. Applications include compilers, computer-algebra systems, deductive systems, and some artificial intelligence applications. Topics include combinators, generic operations, pattern matching, pattern-directed invocation, rule systems, backtracking, dependencies, indeterminacy, memoization, constraint propagation, and incremental refinement. Substantial weekly programming assignments are an integral part of the subject.
There will be extensive programming assignments, using MIT/GNU Scheme. Students should have significant programming experience in Scheme, Common Lisp, Haskell, CAML or some other “functional” language.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Sussman, Gerald
Date Added:
02/01/2009
Aerodynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Darmofal, David
Date Added:
09/01/2005
Aerodynamics and Aircraft Performance
Unrestricted Use
CC BY
Rating
0.0 stars

Aerodynamics and Aircraft Performance, 3rd edition is a college undergraduate-level introductory textbook on aircraft aerodynamics and performance. This text is designed for a course in Aircraft Performance that is taught before the students have had any course in fluid mechanics, fluid dynamics, or aerodynamics. The text is meant to provide the essential information from these types of courses that is needed for teaching basic subsonic aircraft performance, and it is assumed that the students will learn the full story of aerodynamics in other, later courses. The text assumes that the students will have had a university level Physics sequence in which they will have been introduced to the most fundamental concepts of statics, dynamics, fluid mechanics, and basic conservation laws that are needed to understand the coverage that follows. It is also assumed that students will have completed first year university level calculus sequence plus a course in multi-variable calculus. Separate courses in engineering statics and dynamics are helpful but not necessary. Any student who takes a course using this text after completing courses in aerodynamics or fluid dynamics should find the chapters of this book covering those subjects an interesting review of the material.

The 236-page text was created specifically for use by undergraduate students in Aerospace Engineering and was based on Professor Marchman’s many years of experience teaching related subject matter as well as his numerous wind tunnel research projects related to aircraft aerodynamics and his personal experience as the owner and pilot of a general aviation airplane. It has been used at Virginia Tech and other universities.

Table of Contents
1. Introduction to Aerodynamics
2. Propulsion
3. Additional Aerodynamics Tools
4. Performance in Striaght and Level Flight
5. Altitude Change: Climb and Glide
6. Range and Endurance
7. Accelerated Performance: Takeoff and Landing
8. Accelerated Performance: Turns
9. The Role of Performance in Aircraft Design: Constraint Analysis
Appendix A: Airfoil Data

Instructors reviewing, adopting, or adapting parts or the whole of the text are requested to register their interest at: https://bit.ly/aerodynamics_interest.

978-1-949373-63-9 (PDF) http://hdl.handle.net/10919/96525
978-1-949373-64-6 (ePub) http://hdl.handle.net/10919/96525
978-1-949373-62-2 (HTML/Pressbooks) https://pressbooks.lib.vt.edu/aerodynamics

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
James F. Marchman III
Date Added:
08/09/2021
Aerodynamics and Aircraft Performance, 3rd edition
Unrestricted Use
CC BY
Rating
0.0 stars

Short Description:
Aerodynamics and Aircraft Performance, 3rd edition Intended for undergraduates, this text provides “stand alone” coverage of basic, subsonic, aircraft performance preceded by an introduction to the basics of aerodynamics that will provide a background sufficient to the understanding of the subjects to be studied in aircraft performance. NewParaDownloadable versions of this book and further information are freely available at: http://hdl.handle.net/10919/96525NewParaDr. James F. Marchman III is Professor Emeritus of Aerospace and Ocean Engineering and a former Associate Dean of Engineering at Virginia Tech where he taught and conducted research in aerodynamics, aircraft performance, aircraft design and other areas over a 40 year career. NewParaInstructors reviewing, adopting, or adapting parts or the whole of the text are requested to register their interest at: https://bit.ly/aerodynamics_interest.

Long Description:
Aerodynamics and Aircraft Performance, 3rd edition is a college undergraduate-level introduction to aircraft aerodynamics and performance. The objective of this text is to provide a “stand alone” coverage of basic, subsonic, aircraft performance preceded by an introduction to the basics of aerodynamics that will provide a background sufficient to the understanding of the subjects to be studied in aircraft performance. This text is designed for a course in Aircraft Performance that is taught before the students have had any course in fluid mechanics, fluid dynamics, or aerodynamics. The text is meant to provide the essential information from these types of courses that is needed for teaching basic subsonic aircraft performance, and it is assumed that the students will learn the full story of aerodynamics in other, later courses. The text assumes that the students will have had a university level Physics sequence in which they will have been introduced to the most fundamental concepts of statics, dynamics, fluid mechanics, and basic conservation laws that are needed to understand the coverage that follows. It is also assumed that students will have completed first year university level calculus sequence plus a course in multi-variable calculus. Separate courses in engineering statics and dynamics are helpful but not necessary. Any student who takes a course using this text after completing courses in aerodynamics or fluid dynamics should find the chapters of this book covering those subjects an interesting review of the material

This is a nearly verbatim presentation of Dr. Marchman’s 3rd edition (2004) of the text with minor corrections to text and formulas, addition of machine-readable math, alt text, and redrawn figures. It is available in Pressbooks, PDF, and ePub.

Instructors reviewing, adopting, or adapting parts or the whole of the text are requested to register their interest at: https://bit.ly/aerodynamics_interest.

Downloadable versions of this book and further information are freely available at: http://hdl.handle.net/10919/96525

Word Count: 86443

ISBN: 978-1-949373-62-2

(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Virginia Tech
Author:
James F. Marchman III
Date Added:
08/06/2021
Aerodynamics of Viscous Fluids
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Drela, Mark
Merchant, Ali
Date Added:
09/01/2003
Aerospace Biomedical and Life Support Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces students to a quantitative approach to studying the problems of physiological adaptation in altered environments, especially microgravity and partial gravity environments. The course curriculum starts with an Introduction and Selected Topics, which provides background information on the physiological problems associated with human space flight, as well as reviewing terminology and key engineering concepts. Then curriculum modules on Bone Mechanics, Muscle Mechanics, Musculoskeletal Dynamics and Control, and the Cardiovascular System are presented. These modules start out with qualitative and biological information regarding the system and its adaptation, and progresses to a quantitative endpoint in which engineering methods are used to analyze specific problems and countermeasures. Additional course curriculum focuses on interdisciplinary topics, suggestions include extravehicular activity and life support. The final module consists of student term project work.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Newman, Dava
Date Added:
02/01/2006
Aerospace Dynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This undergraduate course builds upon the dynamics content of Unified Engineering, a sophomore course taught in the Department of Aeronautics and Astronautics at MIT. Vector kinematics are applied to translation and rotation of rigid bodies. Newtonian and Lagrangian methods are used to formulate and solve equations of motion. Additional numerical methods are presented for solving rigid body dynamics problems. Examples and problems describe applications to aircraft flight dynamics and spacecraft attitude dynamics.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Deyst, John
How, Jonathan
Date Added:
02/01/2003
Aerospace Mechanics of Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Welcome to this course of Aerospace Mechanics of Materials. We are happy that you chose to join us on this exciting journey. This course deals with basic material and geometry dependent analysis of structures. In this course, you will investigate how these material properties, in combination with structural geometries, affect the design and performance of basic structural elements under axial, torsion, bending and shear loading.

We have divided this course into eight different subjects and a review chapter. In those subject, you will find video lectures and readings, where the concepts and theory will be explained; examples, where we will solve a problem for you, so you can reinforce the concepts you have learned; and exercises, that will allow you to test your knowledge.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Author:
Dr. Calvin Rans
Dr. Sofia Teixeira de Freitas
Date Added:
07/30/2018
Aerospace Structures
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Aerospace Structures by Eric Raymond Johnson is a 600+ page text and reference book for junior, senior, and graduate-level aerospace engineering students. The text begins with a discussion of the aerodynamic and inertia loads acting on aircraft in symmetric flight and presents a linear theory for the status and dynamic response of thin-walled straight bars with closed and open cross-sections. Isotropic and fiber-reinforced polymer (FRP) composite materials including temperature effects are modeled with Hooke’s law. Methods of analyses are by differential equations, Castigliano’s theorems, the direct stiffness method, the finite element method, and Lagrange’s equations. There are numerous examples for the response axial bars, beams, coplanar trusses, coplanar frames, and coplanar curved bars. Failure initiation by the von Mises yield criterion, buckling, wing divergence, fracture, and by Puck’s criterion for FRP composites are presented in the examples.

Resources
PDFs (book and chapter-level)
Problem sets: http://hdl.handle.net/10919/104169
LaTeX sourcefiles: Expected spring 2022
Print (Softcover. Does not include appendix): https://www.amazon.com/dp/1949373444.

Professors, if you are reviewing this book for adoption in your course, please let us know here: http://bit.ly/interest-aerospace-structures. Instructors reviewing, adopting, or adapting parts or the whole of the text are especially encouraged to sign up.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Eric R. Johnson
Date Added:
03/21/2022
Affective Computing
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course instructs students on how to develop technologies that help people measure and communicate emotion, that respectfully read and that intelligently respond to emotion, and have internal mechanisms inspired by the useful roles emotions play.

Subject:
Applied Science
Computer Science
Engineering
Life Science
Psychology
Social Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Picard, Rosalind
Date Added:
09/01/2015
Agent Based Modeling of Complex Adaptive Systems (Basic)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Our human society consists of many intertwined Large Scale Socio-Technical Systems (LSSTS), such as infrastructures, industrial networks, the financial systems etc. Environmental pressures created by these systems on Earth‰ŰŞs carrying capacity are leading to exhaustion of natural resources, loss of habitats and biodiversity, and are causing a resource and climate crisis. To avoid this sustainability crisis, we urgently need to transform our production and consumption patterns. Given that we, as inhabitants of this planet, are part of a complex and integrated global system, where and how should we begin this transformation? And how can we also ensure that our transformation efforts will lead to a sustainable world? LSSTS and the ecosystems that they are embedded in are known to be Complex Adaptive Systems (CAS). According to John Holland CAS are "...a dynamic network of many agents (which may represent cells, species, individuals, firms, nations) acting in parallel, constantly acting and reacting to what the other agents are doing. The control of a CAS tends to be highly dispersed and decentralized. If there is to be any coherent behavior in the system, it will have to to arise from competition and cooperation among the agents themselves. The overall behavior of the system is the result of a huge number of decisions made every moment" by many individual agents. Understanding Complex Adaptive Systems requires tools that themselves are complex to create and understand. Shalizi defines Agent Based Modeling as "An agent is a persistent thing which has some state we find worth representing, and which interacts with other agents, mutually modifying each other‰ŰŞs states. The components of an agent-based model are a collection of agents and their states, the rules governing the interactions of the agents and the environment within which they live." This course will explore the theory of CAS and their main properties. It will also teach you how to work with Agent Based Models in order to model and understand CAS.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Assessment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Dr. Ir. I. Nikolic; Dr.ir. I. Bouwmans
Date Added:
03/03/2016
Aging Heart Valves
Read the Fine Print
Educational Use
Rating
0.0 stars

In this unit, students learn about the form and function of the human heart through lecture, research and dissection. Following the steps of the Legacy Cycle, students brainstorm, research, design and present viable solutions to various heart conditions as presented through a unit challenge. Additionally, students study how heart valves work and investigate how faulty valves can be replaced with new ones through advancements in engineering and technology. This unit demonstrates to students how and why the heart is such a powerful organ in our bodies

Subject:
Applied Science
Education
Engineering
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Date Added:
09/18/2014
Air Bag Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Do you need proof that driving is a dangerous activity? More Americans have died in car crashes over the past 100 years than in all the wars the U.S. has ever fought combined. More than 40,000 Americans die each year on the nation's highways, most as the result of high-speed collisions. In this video segment adapted from NOVA, learn how engineers developed the air bag, an important automobile-safety device now found in most cars.
Recommended for: Grades 3-12

Subject:
Applied Science
Education
Engineering
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
Argosy Foundation
WGBH Educational Foundation
Date Added:
05/09/2006
Air: Design a Paper Airplane
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This STEM challenge can be used during an air unit. Students are able to find ways to best minimize air resistance. The students are trying to develop a paper airplane that will go the farthest in the class competition.

Subject:
Applied Science
Education
Elementary Education
Engineering
Material Type:
Lesson Plan
Date Added:
06/16/2021
Air: Design a Paper Airplane
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This STEM challenge can be used during an air unit. Students are able to find ways to best minimize air resistance. The students are trying to develop a paper airplane that will go the farthest in the class competition.

Subject:
Applied Science
Education
Elementary Education
Engineering
Material Type:
Lesson Plan
Date Added:
12/05/2018
Air: Design a Parachute for a Lego Person
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This STEM challenge can be used during an air unit. Students work together in groups to create a parachute for a lego person. Students are able to find ways to best maximize air resistance. The students need to find the best way to increase the time that the lego person stays in the air when dropped from the second floor to the first floor.

Subject:
Applied Science
Architecture and Design
Education
Elementary Education
Engineering
Physical Science
Material Type:
Lesson Plan
Date Added:
04/19/2021